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  Abstract        Antarctic krill is the key species of ecological system in the Amundsen Sea. At present, 
the suitable distribution is unobtainable by scientifi c surveys or data from the fi shery. In this paper, the 
maximum entropy algorithm (Maxent) was used to obtain the potential distribution of adult Antarctic krill 
in order to provide useful information and reasonable reference for the policy on protecting potential krill 
habitats around the Amundsen Sea. Occurrence points and 17 environmental variables were used to simulate 
the distributions. Results show that the high and moderate suitable habitats lie between 65°S and 72°S in 
the Amundsen Sea. The high suitable habitat accounts for 8.1% of the total area of the Amundsen Sea. The 
sea ice persistence (ICE), total phytoplankton (PHYC), and the minimum value of dissolved iron (Fe_min) 
are the three dominant contributors to the model. Results from the response curves show that Antarctic 
krill preferred habitats with ICE of 0.42–0.93, PHYC of 2.48–2.77 mmol/m 3  and Fe_min of (7.10×10 -5 )–
(9.45×10 -5 ) mmol/m 3 . Positive trends existed in the PHYC of the high and moderate suitable habitat, and a 
positive trend existed in the Fe_min of moderate suitable habitat. However, the probability of presence of 
Antarctic krill will decrease if the increase of the PHYC and Fe_min continues.  

  Keyword :  krill; Amundsen Sea; Maxent; potential distribution

 1 INTRODUCTION 

 In 1982, the Commission for the Conservation of 
Antarctic Marine Living Resources (CCAMLR) was 
established with the objective of conserving living 
marine resources in the Southern Ocean. At present, 
the Southern Ocean has contributed a considerable 
proportion of the marine protected areas (MPAs) 
network at a global scale due to the uniqueness of the 
Antarctic environment (Brooks et al., 2020; Teschke 
et al., 2020). The Amundsen Sea, lying between Cape 
Flying Fish to the east and Cape Dart on Slip Island to 
the west (Fig.1), has a relatively narrow continental 
shelf and a large amount of perennial sea ice, and a 
number of coastal polynyas located adjacent to large 
ice shelves (Arrigo and Van Dijken, 2003). Results 
from satellite show that the coastal ecosystems of the 
polynyas in the Amundsen Sea have the largest 
phytoplankton productivity in the Antarctic (Arrigo 

and Van Dijken, 2003; Arrigo et al., 2012). At present, 
the CCAMLR has listed the Amundsen Sea as one of 
the nine MPAs reserves to be planned in the Antarctic 
region.  

 Antarctic krill is a keystone species of the neritic 
ecosystem in the Southern Ocean, as well as a key 
dietary resource for several predators, such as 
Antarctic fur seals, whales, Adélie, chinstrap, and 
several species of fi sh, squid, albatross and other 
invertebrates (Croxall and Prince, 1980; Siegel and 
Piatkowski, 1990; Forcada et al., 2012). Research 
showed that variability in the abundance and 
distribution of krill have substantial eff ects on 
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reproductive performance of krill-dependent 
predators (Croxall et al., 1999; Reid et al., 2005; 
Forcada et al., 2012). In addition to their ecological 
role, krill is also the dominant fi shed species in the 
Southern Ocean, which has a potential sustainable 
yield equivalent to 11% of global fi shery landings 
(Grant et al., 2013). But the habitat of Antarctic krill 
in the Southern Ocean is subject to on-going climate 
changes, such as sea ice decline, temperature rise, and 
ocean acidifi cation (Jacquet et al., 2010; Flores et al., 
2012a, b; Sylvester et al., 2021). Recently more and 
more concerns were forced on the future sustainability 
of krill harvesting under the cumulative pressure of 
climate and fi sheries (Schiermeier, 2010; Meyer et al., 
2020; Watters et al., 2020). Resource and conservation 
management in the Southern Ocean will become 
more adaptive as Antarctic krill populations and 
marine ecosystems are responding to climate change 
(Flores et al., 2012a). The CCAMLR is responsible 
for managing marine living resources in the Antarctic 
Ocean using an ecosystem-based approach to 
management (Constable et al., 2000), in which krill 
play a central role in the marine food web of the wider 
ecosystem (Constable et al., 2000; Ballerini et al., 
2014; Dahood et al., 2020). The eff ectiveness of 
management is highly dependent on detailed 
knowledge of their distribution, and how the 
distributions are aff ected by a complex range of 
environmental variables (Silk et al., 2016). Thus, 
understanding the spatial distribution of krill and how 
the distribution are eff ected by the environment 
conditions is very important for the sustainable fi shery 
management and conservation policy making (such 
as identifying suitable Marine Protected Areas). At 
present, knowledge about krill spatial distribution 
mostly comes from scientifi c surveys using acoustics 

or nets or data from the fi shery (Reiss et al., 2008; 
Atkinson et al., 2012; Kinzey et al., 2015; La et al., 
2015). However, these data only cover a tiny fraction 
of the South Ocean, especially in the Amundsen Sea, 
which fail to meet the need for spatial distribution.  

 Habitat suitability models, which can signifi cantly 
improve the understanding on species niche 
requirements, have been widely used to predict the 
potential distributions of species by using distribution 
points and environmental variables (Peterson et al., 
2002; Hirzel et al., 2006; Xavier et al., 2016). 
Implementation of habitat suitability started with 
terrestrial species, with increasing numbers of 
publications each year (Phillips et al., 2006; Saatchi et 
al., 2008; Robinson et al., 2011; Melo-Merino et al., 
2020). In the Southern Ocean, Bombosch et al. (2014) 
modelled habitat suitability of humpback and Antarctic 
minke whales in the Southern Ocean, they produced 
daily basinwide/circumpolar prediction maps of 
habitat suitability. Do Amaral et al. (2015) used 
ecological niche modeling to estimate the potential 
distribution of Stenella dolphins in the southwestern 
Atlantic Ocean, they found that diff erent species of 
Stenella have distinct environmental requirements. 
Xavier et al. (2016) used habitat suitability models to 
assess favorable areas from 15 cephalopods in the 
Southern Ocean. Nachtsheim et al. (2017) detected the 
suitable habitats for crabeater seals within the Weddell 
Sea using maximum entropy model (Maxent). Wege et 
al. (2020) modeled habitat suitability for crabeater 
seals in the Weddell Sea using satellite images.  

 In this work, a presence-only habitat modelling 
approach named Maxent was used to estimate the 
possible distribution and to investigate the infl uence 
of certain environmental variables on the distribution 
of Antarctic krill in the Amundsen Sea. In this way, 
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favored conditions for Antarctic krill were detected 
within the Amundsen Sea, which is critically 
important for the planning of marine protected areas 
in the Amundsen Sea.  

 The outline of this paper are as follows: a brief 
description of the datasets and methods were provided 
in Section 2, Section 3 listed the results, discussions 
were provided in Section 4, and Section 5 presented 
the main conclusions draw from this study.  

 2 DATA SET AND METHODOLOGY 

 2.1 Data set 

 The presence data of the Antarctic krill is from 
KRILLBASE, which is an open access database of 
net-based juvenile and adult Antarctic krill (Atkinson 
et al., 2016). In total, we get 40 eff ective locations for 
Antarctic krill (Fig.1). Nearly all selected locations 
were concentrated in January, February, March, 
November, and December. These are too little data to 
get the temporal variation (There are only 8 points on 
monthly average), so we put these locations together 
to get the spatial distribution in this work. In order to 
avoid the spatial auto-correlation, which aff ects the 
accuracy of the model, we randomly removed a point 
with distance less than 0.1° between two points 
(Milchev, 2009; Zhang et al., 2019).  

 In this work, 8 physical and 9 ecological variable 
of the ocean were used to analyze the habitat 
preferences of Antarctic krill (Table 1). These 
variables are derived from the Global Ocean 
Reanalysis Simulation (GLORYS2v4) (http://marine.
copernicus.eu/service-portfolio/) as monthly mean 
value of January, February, March, November, and 
December from 1993 to 2015 with a resolution of 
0.25°×0.25°. All the data used in this work was the 
fi rst layer of the variables. The parameters used in the 
Maxent contained the average states of the variables 
(January, February, March, November, and 

December), their variability (maximum mean, 
minimum mean, and long-term change rate). The sea 
ice persistence index (ICE) was calculated as the 
proportion of the overall time during which the grid 
was covered by sea ice (the sea ice concentration 
larger than 60%). The index was calculated as 
ICE= M  1 / M , where  M  1    is the number of months which 
monthly sea ice concentration is less than 60%, and  M  
is the number of months used in a year (in this work it 
is 5).The extent of all variables was clipped to match 
the study area, ranging from 80°W to 150°W and 
55°S to 80°S. Furthermore, correlation analysis was 
performed on the attribute values of 17 variables, as 
too many variables would increase the complexity 
and random error of the model, which would reduce 
the accuracy of the results (Jiang, 2018; Zhang et al., 
2019). The factors with Pearson’s correlation 
coeffi  cient larger than 0.7 was removed (Nachtsheim 
et al., 2017). In addition, the variables that contribute 
less than 0.01 to the Maxent model were removed 
(Nachstheim et al., 2017). Finally, 10 parameters, ICE 
(sea ice persistence index), PHYC (total 
phytoplankton), Fe_min (minimum dissolved iron), 
SPCO2_min (minimum surface CO2), U_max 
(maximum eastward velocity), Fe (dissolved iron), 
NPPV_min (minimum total primary production of 
phytoplankton), MLP_max (maximum density ocean 
mixed layer thickness), PO4_min (minimum 
phosphate), and V_max (maximum northward 
velocity) for the Antarctic krill were selected in this 
work.  

 2.2 Methodology 

 In this work, the maximum entropy model (Maxent) 
was used to calculate the constraints and estimates the 
possible distribution of the Antarctic krill using the 
environmental variables and krill presence points. 
Maxent is quite prevalent in habitat modeling as only 
presence points was needed and works well with 

 Table 1 Physical and ecological variables from the GLORYS2v4 

 Physical  Ecological 

Temperature (TEM) Total Chlorophyll (CHL)

Salinity (SAL) Nitrate (NO3)

Eastward velocity (U) Phosphate (PO4)

Northward velocity (V) Dissolved silicate (SI)

Sea surface height (SSH) Dissolved oxygen (O2)

Density ocean mixed layer thickness (MLP) Total primary production of phyto (NPPV)

Sea fl oor potential temperature (BOT) Dissolved Iron (Fe)

Sea ice thickness (HICE) Surface CO2 (SPCO2)

Total phytoplankton (PHYC)
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small sample sizes (Phillips and Dudik, 2008; Merow 
et al., 2013; Saupe et al., 2015). The program Maxent 
(version 3.4.1, https://biodiversityinformatics.amnh.
org/open_source/maxent/, Phillips et al., 2006; 
Phillips and Dudík, 2008) was used in this work, 75% 
of the specie locations were selected to build the 
model, and the remaining 25% of the locations to test 
the model. Within the setting window, a bootstrap 
replicate run type was selected for 10 replicates with 
a random test percentage of 25% used. We used the 
bootstrap to sample the presence data for multiple 
runs. The cloglog was chosen as the output format, 
which gives a rough estimate of a probability of 
presence. The maximum test sensitivity plus 
specifi city was selected as the threshold. Jackknife 
test was used to get the contribution rate and 
importance of variables. Model performance was 
assessed using receiver operating characteristic 
(ROC) curves using both the training and test data 
(Fielding and Bell, 1997; Nachtsheim et al., 2017). 
The area under the curve (AUC) can range between 
0 and 1, the model can be judged as excellent if AUC 
is higher than 0.9 and good if AUC is between 0.8 and 
0.9 (Fielding and Bell, 1997; Phillips et al., 2006; 
Nachtsheim et al., 2017). 

 Habitat suitability was defi ned based on the 
particular value in each cell and ranked into four 
diff erent categories (Boitani et al., 2002; Elith et al., 
2011). 

 “Unsuitable”: where the ecological requirement of 
the species are not fulfi lled (with the probability less 
than 0.2); 

 “Low Suitability”: where habitat features cannot 
support a permanent species presence (with the 
probability between 0.2 and 0.4); 

 “Moderate”: where habitat features support species 
presence at a sub-optimal level (with the probability 
between 0.4 and 0.6); 

 “High Suitability”: where habitat features support 
species presence at an optimal level (with the 
probability larger than 0.6). 

Mann-Kendall test, fi rst introduced by Mann 
(1945), is a non-parametric statistical method to test 
the signifi cant of change trend of time series. It has 
been widely used to assess the long-term trend and 
abrupt change point of climate factors. The statistic 
UFk is an order normalization parameter of time series 
X calculated in order. If UFk is larger (smaller) than 0, 
it indicates that the sequence is increasing (decreasing). 
For a given signifi cant level α, if the absolute value of 
UFk is greater than Uα (for α=0.05, Uα=±1.96), the 

sequence has a signifi cant trend. UBk is an order 
normalized parameter calculated in reverse order of 
time series X. If there is an intersection point between 
the two curves of UFk and UBk, and the point is 
between the Uα, the point corresponding to the abrupt 
change point. 

 3 RESULT 
 3.1 Habitat suitability maps for Antarctic krill 

 In this work, Maxent performed well in terms of 
generating species distribution models for Antarctic 
krill in the Amundsen Sea (Fig.2), with the AUC 
values equal to 0.91 (0.92 for training data and 0.90 
for test data). Results show that the high suitable 
habitat for Antarctic krill located between 65°S and 
72°S, which account for 8.1% of the total area of the 
Amundsen Sea. The moderate suitability habitat 
mostly located at the border area of the high suitable 
habitat and there was also a small area in the central 
west of Amundsen Sea, and account for 6.7% of the 
total area. The low suitability habitat account for 
11.2% of the total area, and mostly located at south of 
65°S. The unsuitable habitat occupied the largest 
percentage in area (74.0% of the total area), which 
located around the coastline (south of 73°S) and 
between 55°S and 63°S. 

 3.2 Key environmental parameters 

 The contribution of each parameter to the modeling 
and the jackknife test of variable importance are 
shown in Fig.3. Based on percent contribution, ICE, 
PHYC, and Fe_min were the top three parameters 
used in the prediction of the Maxent model that 
aff ected the distribution of Antarctic krill in the 
Amundsen Sea. The ICE was the greatest contributor 
(57.2%) to the model, the contributions of PHYC was 
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larger than 10% (12.4%) and the contributions of   
Fe_min was smaller than 10% (7.6%). The 
contributions of other variables were less than 5% to 
the model. The jackknife test of variable importance 
showed the highest gain when PHYC was used in 
isolation containing the most information when used 
alone. The responses curves indicate the relationship 
between the probability occurrence and environmental 
variables (Fig.4). Results show that the probability 
occurrence increased fi rst and then decreased with the 
increase of the ICE. The maximum probability 
occurred at 0.86, and the optimum range was from 
0.38 to 0.93 (with probability occurrence larger than 
0.60). The probability occurrence increased fi rst and 
then decreased with the increase of the PHYC. The 
maximum probability occurred at 2.55 mmol/m 3 , and 
the optimum range was from 2.48 to 2.77 mmol/m 3 . 
For Fe_min, the maximum probability occurred at 
7.39×10 -5  mmol/m 3 , and the optimum range was from 
7.10×10 -5  to 9.45×10 -5  mmol/m 3 . The results of the 
responses curves are in consistent with the 
observations (Fig.5). The ICE were distributed from 
0.35 to 0.97, mostly were within the optimum range. 

The PHYC mostly ranged from 2.47 to 2.73, nearly 
the same as the optimum range of PHYC. The Fe_min 
mostly ranged from 7.02×10 -5  to 7.71×10 -5 , also 
within the optimum range of Fe_min.  

 3.3 Changes of key environmental parameters 

 For the Antarctic krill in the Amundsen Sea, the 
ICE, PHYC, and Fe_min were the main factors 
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aff ecting the habitat suitability, with the contribution 
about 77.2% in total. Average of ICE, PHYC, and 
Fe_min in January, February, March, November, and 
December from 1993 to 2015 were calculated and 
shown in Fig.6. Results show that the ICE increased 
as latitude increased in the Amundsen Sea. The mean 
value of high and moderate suitable habitat sare about 
0.31 and 0.32, respectively. Results also show that the 
ICE might be the main restrictive factor in the northern 
part of the central region, where the PHYC and Fe_min 
were within the optimum range. 

 The PHYC was largest along the coastline, 
especially in the Pine Island Bay (with values larger 
than 3.23). In general, the PHYC in the east part was 
higher than that in the west part. It showed that the 
high and moderate suitable habitat had relative higher 
PHYC than the outer part of the Amundsen Sea, the 
mean value of high and moderate suitable habitat are 
about 2.68 mmol/m 3  and 2.30 mmol/m 3 , respectively. 
Results also show that in the northern part of the 
central region, where belonged to unsuitable habitat, 
the PHYC value was also larger than 2.48 mmol/m 3  
and smaller than 2.77 mmol/m 3 . It seemed that at 
these areas the food supply was not the restrictive 
factors for the adult Antarctic krill.  

 The Fe_min was largest along the coastline, and 
results show that the high and moderate suitable 
habitat had relative higher Fe_min than the outer part 
of the Amundsen Sea, the mean value of high and 
moderate suitable habitat are about 7.4×10 -5  and 
7.5×10 -5  mmol/m 3 , respectively. 

 Climate change has already produced spatial and 
temporal changes in earth’s habitats and ecosystems 
(Parmesan and Yohe, 2003; Burrows et al., 2011; 
Veytia et al., 2020). Currently, ocean warming is more 
obvious in the Southern Ocean than global average 
(Vaughan et al., 2003; Meredith et al., 2019). Previous 
studies have shown that the climate variables of the 
Southern Ocean (e.g. sea temperature, ice cover,  and 
chlorophyll) can aff ect the survival and growth of the 
Antarctic krill (Atkinson et al., 2004; Hill et al., 2013; 
Veytia et al., 2020). However, the eff ects on observed 
Antarctic krill distribution is a topic of debate 
(Atkinson et al., 2004; Loeb and Santora, 2015; 
Piñones and Fedorov, 2016; Cox et al., 2018). In this 
work, annual mean values of ICE, PHYC, and Fe_min 
of the high and moderate suitable habitat and Mann-
Kendall (Rashid et al., 2015) test were calculated and 
shown in Fig.7.  

 Results show that the ICE of the high and 
moderate suitable habitat were all within the 
optimum range, and no signifi cant long-term trend 
exist in the ICE. At only three years (2006, 2008, 
2013), the ICE of the high suitable habitat was 
smaller than 0.6, clearly decadal variations exist in 
ICE of the high suitable habitat. A positive trend 
existed in the ICE of the moderate and it was 
signifi cant from 2012 to 2013. 

 Results of PHYC are diff erent from that of ICE. At 
only 7 years the PHYC of the high suitable habitat 
were within the optimum range. A positive trend 
existed in the PHYC and it was signifi cant after 1999. 
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The changes of PHYC of moderate and high suitable 
habitat were quite similar. The PHYC of the high and 
the moderate suitable habitat were larger than 
2.56 mmol/m 3  (where the maximum probability 
occurred). It seems that the PHYC were becoming 
more benefi cial to the Antarctic krill after 2000. 
However, it also showed that if the increase of the 
PHYC continues, the PHYC would be out of the 
optimum range in the moderate and high suitable 
habitat.  

 The Fe_min of the high suitable habitat and 
moderate suitable habitat were all within the optimum 
range. No signifi cant long-term trend exists in the 
Fe_min of high suitable habitat. But a positive trend 
existed in the Fe_min of moderate suitable habitat and 
it was just signifi cant from 2002 to 2003. At only 
three years (2002, 2014, 2015), the Fe_min of the 
moderate suitable habitat was larger than                 
8.4×10 -5 mmol/m3 , which was obviously larger than 
those at other years. In addition, if the increase of the 

Fe_min continues, the probability of presence of 
Antarctic krill will decrease in the moderate suitable 
habitat (Fig.3). 

 4 DISCUSSION 

 Detail knowledge of species distribution is often 
pre-requisite to protect and utilize the species in the 
ecosystem. The Maxent has been widely used to 
predict the species abundance distributions, the 
suitable areas for invasive species, and the 
geographical distributions both on land and in the 
ocean (Thuiller et al., 2005; Pueyo et al., 2007; Cao et 
al., 2016). Antarctic krill is an ecologically and 
commercially important species in the Amundsen 
Sea. The spatial distribution and the eff ects of the 
environment conditions on the distributions are 
important to the development of sustainable fi shery 
management and conservation policy. Using the 
distribution data and fi eld environmental data, the 
potential distribution of Antarctic Krill in the 
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 Fig.7 Mean values of ICE, PHYC, and Fe_min of the high (red line) and moderate (black line) suitable regions 
 The value where maximum probability occurred (blue dotted line) in the optimum range (black dotted lines) (a), the estimates progressive (UF) and backward 
(UB) series of the Mann-Kendall test of mean value of high suitable regions (b), the estimates progressive (UF) and backward (UB) series of the Mann-
Kendall test of mean value of moderate suitable regions (c). 
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Amundsen Sea was obtained based on the Maxent. It 
can be seen that the ICE, PHYC, and Fe_min were the 
main factors aff ecting the habitat suitability. The sea 
ice melt water reduced the temperature (TEM) in the 
high and moderate suitable habitat; a colder water 
was thought to be more suitable for the growth of the 
krill (Nicol, 2000; Atkinson et al., 2006). In addition, 
the sea ice can aff ect the phytoplankton in the Southern 
Ocean (Wang et al., 2014; Deppeler and Davidson, 
2017). The phytoplankton in the Southern Ocean is 
usual limited by the iron (Fe) and light limitation due 
to deep vertical mixing below the critical depth (De 
Baar et al., 2005; Boyd et al., 2007; Moore et al., 
2013).The fresh low temperature water from sea ice 
melt reduced the density ocean mixed layer thickness 
and increased light availability (Assmann et al, 2005; 
Holland et al., 2010). All of these made a relative high 
phytoplankton production (higher than deep-sea 
areas) in the high and moderate suitable habitat 
(Hofmann and Hüsrevoǧlu, 2003; Siegel and Watkins, 
2016; Silk et al., 2016).  

 The PHYC was the food resource of the adult 
Antarctic krill. Food supply has the most direct eff ects 
on the animal survival, reproductive success, and 
population size (Newton, 2003). This result is 
consistent with other studies that adult krill in the 
open ocean are frequency associated with moderate 
food availability (Atkinson et al., 2008; Tarling et al., 
2009; Silk et al., 2016). Atkinson et al. (2008) 
suggested that this relationship was a trade-off  
between food availability and growth potential and 
predation risk. The dissolved iron was an important 
factor limiting primary productivity. Alderkamp et al. 
(2015) indicated that primary productivity would be 
stressed by low iron concentrations during the months 
of December and January in the Amundsen Sea.  

 In this work, the presence data (40 points) of the 
Antarctic krill is from KRILLBASE, in which the 
data concentrated in January, February, March, 
November, and December. During these months, the 
adult krill swarms feed on phytoplankton in surface 
waters (Flores et al., 2012b). The results still agreed 
with what we know about the abundance and 
distribution of adult Antarctic krill, and the eff ects of 
environment conditions on distributions (Berglund, 
1985; Atkinson et al., 2008; Kraff t et al., 2010). 
However, the overwintering strategy of adult Antarctic 
krill was not taken into account. In addition, these are 
too little data to get the monthly variation (There are 
only 8 points on average). During the dark season, 
adult krill usually migrates to deeper water levels 

below 200 m or concentrates under the sea ice (Siegel, 
2005; Taki et al., 2005; Flores et al., 2012b). We did 
not get observations during the dark season. This 
current method is not able to provide the habitat 
suitability maps of the adult Antarctic krill in the dark 
season. Therefore, diff erences may exist in the 
distributional behaviors and habitat preferences of 
Antarctic krill as the season progressed. In addition, 
there may be underestimate as it is diffi  cult to get 
presence data in the shelf area when there is ice cover. 
Despite these, our results still have reference 
signifi cance for the policy of the protecting potential 
krill habitats around the Amundsen Sea for the 
CCAMLR. Future improvements and more extensive-
studies may be carried out when more data is available 
in the Amundsen Sea. Based on our results, we put 
forward some suggestions: First, more attention 
should be paid to the suitable areas of the adult krill, 
especially the high suitable habitat, where should be 
the important areas for protection. Second, the eff ects 
of climate changes on the abundance and distribution 
of adult Antarctic krill should be taken into account 
when planning protected areas. Third, more 
observations and studied of the adult krill are still 
needed in the Amundsen Sea. 

 Although this work is not able to provide the 
habitat suitability maps of the adult Antarctic krill in 
the dark season, the results still agreed with what we 
know about the abundance and distribution of adult 
Antarctic krill. Therefore, the habitat suitability map 
and conclusions got from this work can provide useful 
information and reasonable reference for the policy of 
the protecting potential krill habitats around the 
Amundsen Sea. 

 5 CONCLUSION 

 Using the Maxent model and sets of environmental 
variables, the suitable habitat distribution and how the 
environmental variables aff ect the abundance and 
distribution of adult Antarctic krill were carried out in 
this work. High suitable habitat for Antarctic krill 
mostly located between 65°S and 72°S in the 
Amundsen Sea. The high and moderate suitable 
habitat accounted for 14.8% of the total area. The 
ICE, PHYC, and Fe_min were the three largest 
contributors to the model, contributed 77.2% in total. 
Adult Antarctic krill preferred habitats with ICE of 
0.42–0.93, PHYC of 2.48–2.77 mmol/m 3 , and Fe_min 
of (7.10×10 -5 )–(9.45×10 -5)  mmol/m 3 .   

 No signifi cant long-term trend existed in the ICE 
of the high and moderate suitable habitat. A positive 
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trend existed in the PHYC of the high and moderate 
suitable habitat and it was signifi cant after 1999. If the 
increase of the PHYC continues, the PHYC will out 
of the optimum range in the moderate and high 
suitable habitat in the future. A positive trend existed 
in the Fe_min of moderate suitable habitat, and the 
probability of presence of Antarctic krill will decrease 
in the moderate suitable habitat if the increase of the 
Fe_min continues.  

 6 DATA AVAILABILITY STATEMENT 

 The presence data of the Antarctic krill can be 
obtained from KRILLBASE (https://www.bas.ac.uk/
project/krillbase/). Environmental variables are 
derived from the GLORYS2v4 (http://marine.
copernicus.eu/service-portfolio/). 
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