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  Abstract       Archaea regulate the biogeochemical processes of ocean systems. The Changjiang (Yangtze) 
River estuary (CRE) is a complex and dynamic area strongly aff ected by seawaters and ocean currents. 
In this study, the planktonic archaeal communities in the surface and bottom seawaters of the CRE were 
investigated. Signifi cant diff erences in the archaeal community composition were found between the 
surface and bottom seawaters ( P <0.001). Marine Group II (MG-II) was dominant in the surface layers, and 
Nitrosopumilales was enriched in the bottom layers. Marine Group III (MG-III) was more abundant in the 
bottom layers than in the surface ones ( P <0.001). These results were completely diff erent from previous 
fi ndings in the CRE seawater. Instead of dissolved oxygen (DO), temperature and salinity were the most 
vital environmental variations in the distribution of the archaeal communities. According to the predicted 
metabolic pathways, the following functional subcategories were enriched in the hypoxic condition: 
replication and repair, membrane transport, glycan biosynthesis and metabolism, amino acid metabolism, 
metabolism of cofactors and vitamins, and xenobiotics biodegradation and metabolism ( P <0.001), which 
indicated the strong adaptability of archaea to the harsh environment in the bottom seawater. These fi ndings 
expand the understanding on archaeal structure and functions in the surface and bottom seawaters, including 
the hypoxic zones in the CRE, and may contribute to further works of the archaeal community in the CRE. 

  Keyword : archaeal communities; adaptability; predicted metabolism; hypoxic zone; Changjiang River 
estuary 

 1 INTRODUCTION 

 In marine environments, microorganisms account 
for nearly 90% of biomass and 98% of ocean primary 
productivity and are the key players in biogeochemical 
processes (Caron, 2005; Sogin et al., 2006). 
Planktonic bacteria and archaea are important ocean 
microbial communities with diff erent evolutionary 
histories. Initial researches revealed that bacteria are 
distributed globally, and archaea prefer extreme 
environments, such as psychrophilic and hypersaline 
environments, deep-sea hydrothermal vents and hot 
springs (Ochsenreiter et al., 2002; Miroshnichenko, 
2004; Cavicchioli, 2006; Mirete et al., 2011). 
However, the applications of molecular technologies 
in microbial ecology have completely changed our 
understanding of archaea in marine ecosystems 
(Schleper et al., 2005). Analysis of 16S rRNA gene 
sequences from numerous environmental samples 

showed that archaea are widespread and play 
important roles in the global carbon and nitrogen 
cycle. It was also found that Euryarchaeota and 
Thaumarchaeota dominate most marine environments 
(DeLong, 1992; Karner et al., 2001; Francis et al., 
2005; Wuchter et al., 2006; Kubo et al., 2012; Vila-
Costa et al., 2013). The archaeal strains were diffi  cult 
to be isolated or purifi ed. So far, the marine archaea 
strains that could be purely cultured were from the 
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phylum Thaumarchaeota, which has made great 
progress in the physiology, biochemistry, and niche 
specifi cation (Ingalls et al., 2006; Martens-Habbena 
et al., 2009; Qin et al., 2017). Most Euryarchaeota 
have not been cultured; however, their lifestyle was 
mainly obtained based on metagenome-assembled 
genomes (Iverson et al., 2012; Deschamps et al., 
2014; Martin-Cuadrado et al., 2015). The phylogeny 
of Euryarchaeota is diverse, including physiologically 
distinct groups, such as strict anaerobic methanogens, 
extreme halophiles, and extreme acidophiles 
(Lewalter and Müller, 2006). The clade Marine 
Group II (MG-II), which affi  liated to Euryarchaeota, 
is globally distributed in the seas and open ocean 
(Massana et al., 2000). The identifi cation of 
proteorhodopsins in genomes derived from the 
surface water layer indicated that MG-II is a taxon of 
photoheterotrophs (Frigaard et al., 2006; Pereira et 
al., 2019). Some subclades can degrade the algalose 
or protein in the surface layers, and some lack 
proteorhodopsins in the mesopelagic zones (Tully, 
2019). These metabolic characteristics make MG-II 
signifi cant contributors to the global oceanic carbon 
cycle. Deep ocean environment lacks sunlight and is 
one of the few ecosystems on the earth that is mainly 
driven by chemolithoautotrophy rather than 
photosynthesis (Yakimov et al., 2011). 
Thaumarchaeota were predominant and regarded as 
chemolithoautotrophs that use nitrifi cation as a major 
energy acquiring mechanism in the dark primary 
production process (Könneke et al., 2005, 2014; 
Yakimov et al., 2011; Stahl and de la Torre, 2012). 
Zhong et al. (2020) assembled several 
thaumarchaeotal genomes, which obtained from the 
Mariana Trench. Through comparative genomics, 
and Zhong et al. (2020) predicted unexpected genes 
involved in bioenergetics, which may be of great 
help to the success under extreme conditions. Zhong 
et al. (2020) also found that the clade has genetic 
potential to import a far higher range of organic 
compounds than their shallower water counterparts. 
Michoud et al. (2021) studies the composition of 
prokaryotic communities in the Red Sea deep 
halocline found that Thaumarchaeota play an 
important role in adapting to the changing conditions 
of the chemocline.  

 The Changjiang (Yangtze) River estuary (CRE), a 
transitional zone between the land and open ocean, is 
a complex and dynamic region suff ering from the 
strong infl uence of seawaters and ocean currents all 
year round. In summer, seasonal hypoxia often occurs 

in the bottom layers of the CRE, which may be caused 
by Taiwan Warm Current, and the high concentrations 
of particle organic carbon and nitrogen (Li et al., 
2002). In addition, it is common in some estuaries, 
such as the Zhujiang (Pearl) River estuary (Liu et al., 
2014; Orita et al., 2015). Hypoxia may be caused by 
water stratifi cation and the decomposition of deposited 
organic matter from rivers mediated by 
microorganisms (Diaz and Rosenberg, 2008; Lohrenz 
et al., 2008; Grenz et al., 2010). 

 Estuaries have always been hotspots for 
biogeochemical cycling. Many high-throughput 
sequencing studies were conducted on the distribution 
of microbial communities in estuaries (Liu et al., 
2014, 2015, 2020; Ye et al., 2016; Wu et al., 2019). 
However, only a few works have explored the 
distribution of archaeal community structure in the 
CRE. Zeng et al. (2007) found the main groups in the 
seawater of the CRE were Marine Group I (MG-I), 
which was affi  liated to the phylum Thaumarchaeota, 
and MG-II. Moreover, MG-I dominated the surface 
layers. Dang et al. (2008) proposed that ammonia-
oxidizing archaea (AOA) are unique in the seawater 
of the CRE mixing zone, and its community 
distribution is crucially related to salinity and 
sediment sorting coeffi  cient. Liu et al. (2011) found 
similar results to Zeng et al. (2007) by denaturing 
gradient gel electrophoresis technology and proposed 
that MG-II is the abundant group in the bottom 
seawater and salinity seriously aff ects the archaeal 
community composition. He et al. (2016) found that 
AOA were substantially related to nitrite in the CRE 
sediments. 

 Although research progress has been achieved 
regarding archaeal distributions in the ocean, the 
adaptive mechanism of archaea communities to the 
corresponding environments in the CRE remains 
unclear. In this study, the structures and adaptability 
of archaeal community in surface and bottom water 
layers of the CRE were determined through 16S 
rRNA gene analysis and metagenomic functional 
prediction. The results may lay the foundation for the 
functional researches of archaea in estuaries. 

 2 MATERIAL AND METHOD 

 2.1 Sample collection and physicochemical 
measurements of seawater 

 During a summer cruise in July 2016, 24 seawater 
samples were collected from 12 stations in the CRE 
(Fig.1). Seawater from the surface (1.9–2.1-m depth; 
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S) and bottom layers (26–60-m depth; B) was 
collected at each site (Table 1) by using Niskin bottles 
mounted on an SBE32 CTD (Sea-Bird Electronics). 
Each 2 L of seawater sample was pre-fi ltered through 
a 3-μm pore size fi lter (Millipore Corporation, 
Billerica, MA, USA) with a gentle vacuum pressure 
<33.3 kPa and then re-fi ltered with a 0.22-μm fi lter to 
collect free-living microbial cells. The 24 fi lters with 
the pore size of 0.22 μm were temporarily stored at 
-20 °C on board and then transferred to -80 °C in the 
laboratory until DNA extraction. The 24 samples 
were divided into two groups: surface and bottom. 
Each sample was named with the location name, 
followed by the abbreviation of the layer. For example, 
the C3S sample means sampling from the surface 
seawater in the C3 site. 

 Seawater physicochemical parameters, including 
depth, salinity, and temperature, were measured by 
CTD in situ. Other parameters, such as the 
concentration of nitrate (NO 3 ̄  ), nitrite (NO 2 ̄), 

ammonium (NH 4 +  ), chemical oxygen demand (COD), 
phosphate (PO     43ˉ    ), and dissolved oxygen (DO), were 
measured following the specifi cations for marine 
monitoring prior to chemical parameter analysis (Wu 
et al., 2019). 
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 Fig.1 A map showing the study areas in the Changjiang 
River estuary 
 Red dots: the sampling sites. 

 Table 1 Environmental and physicochemical factors of the seawater from two layers (surface and bottom) of the 24 samples 
in the 12 sites in the Changjiang River estuary 

 Sample  Depth (m)  DO (mg/L)  COD (mg/L)  pH  NO 3 ̄  (mg/L)  NO 2 ̄      (mg/L)  PO     43ˉ     (mg/L)  NH 4 + (mg/L)  Salinity  Temperature (°C) 

 C3S  1.942  5.294  0.578  8.180  45.120  0.409  0.339  1.548  18.769  25.072 

 C4S  1.986  9.894  2.429  8.690  45.559  0.413  0.593  0.469  13.788  26.667 

 C5S  1.955  6.040  0.634  8.200  39.357  0.409  0.339  1.066  23.226  23.994 

 D3S  1.957  4.216  0.610  7.930  57.163  0.464  1.186  0.811  11.544  25.972 

 D4S  1.962  5.692  0.663  8.170  38.757  0.399  0.339  0.998  20.442  24.500 

 D5S  1.943  5.062  0.634  8.130  35.968  0.473  0.254  0.847  20.390  24.702 

 E3S  1.975  4.274  0.803  7.930  50.010  0.340  1.016  0.472  18.130  24.546 

 E4S  1.948  4.155  0.788  7.940  50.274  0.500  1.186  0.350  21.703  23.890 

 E5S  2.033  7.974  2.025  8.460  63.872  0.496  0.508  1.011  19.570  25.664 

 F3S  1.898  4.367  0.606  7.930  30.615  0.340  0.678  0.626  26.353  23.626 

 F4S  1.991  7.578  0.894  8.280  24.529  0.455  0.169  0.602  24.013  25.791 

 F5S  1.995  4.881  0.840  8.200  10.155  0.184  0.169  0.416  26.273  26.941 

 C3B  41.828  1.805  0.335  7.770  14.554  0.312  1.016  0.210  33.927  20.164 

 C4B  59.669  2.045  0.343  7.780  15.642  0.280  1.355  0.293  34.054  20.041 

 C5B  50.725  2.259  0.367  7.740  13.945  0.280  1.186  0  34.080  20.436 

 D3B  27.731  1.682  0.372  7.730  19.169  0.243  1.186  0.214  33.153  20.013 

 D4B  46.821  1.975  0.264  7.780  16.401  0.161  1.016  0.162  33.930  20.039 

 D5B  50.979  1.877  0.359  7.540  15.441  0.202  0.762  0.159  34.179  20.602 

 E3B  26.983  2.539  0.263  7.820  20.615  0.441  1.101  0.165  33.004  20.382 

 E4B  42.962  2.208  0.403  7.820  10.779  0.303  1.186  0.464  34.151  20.255 

 E5B  54.540  2.601  0.315  7.850  15.846  0.211  0.762  0.176  34.229  20.316 

 F3B  35.762  2.132  0.320  7.810  16.411  0.156  1.016  0.334  34.139  20.171 

 F4B  57.476  2.249  0.156  7.810  17.637  0.142  1.186  0.187  34.364  19.878 

 F5B  51.706  1.972  0.270  7.830  16.241  0.133  1.270  0.177  34.421  20.194 

 The actual measured value of the NH 4 +   concentration in C5B was -0.041, which replaced by 0. 
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 2.2 DNA extraction, PCR, and sequencing 

 The DNA of the 24 samples was extracted with a 
FastDNA spin kit for soil (MP Biomedicals, USA) in 
accordance with the specifi cation. The DNA extracts 
were quantifi ed using a NanoDrop 2000 (Thermo 
Fisher Scientifi c, USA) and then sent to Biozeron 
Company (Shanghai, China) for 16S rRNA gene 
amplifi cation (V4–V5 region) using dual-indexed 
archaeal barcoded primer pairs 524F 
(5′-TGYCAGCCGCCGCGGTAA-3′) and 958R 
(5′-YCCGGCGTTGAVTCCAATT-3′). Prior to PCR, 
the 12-bp barcode sequences were linked to the 
primers during primer synthesis. Each DNA sample 
was amplifi ed as an undiluted template and at a 1꞉10 
template dilution to reduce the potential eff ects of 
PCR bias. The 16S amplicons were pooled together 
and their quality was verifi ed by Bioanalyzer (Agilent 
Technologies). Following dilution, the library pool 
was quantifi ed by quantitative-PCR. Finally, the 
pooled samples were run on the Illumina HiSeq 
platform. Raw sequence fi les are available at the 
NCBI Sequence Read Archive under accession 
SUB6193127. 

 2.3 Sequence quality control and amplicon 
sequence variant (ASV) assignment 

 The raw reads FASTQ fi les were processed and 
analyzed using the QIIME 2 bioinformatics program 
(Bolyen et al., 2019). Plugin “qiime tools import” was 
used to import the raw FASTQ data by a manifest fi le 
including the samples’ IDs and absolute pathways. 
Barcodes and primers were removed by the plugins 
“qiime cutadpt demux-paired” and “qiime cutadapt 
trim-paired”, respectively. Plugin “qiime dada2 
denoise-paired” was used to perform quality fi ltering, 
denosing and chimera removal to cluster the sequences 
into ASVs (i.e., the representative sequences). After 
the base with average quality lower than 20 were 
removed, the average length of reads was 455 bp. A 
total of 780 721 sequences were obtained after 
denosing and chimera removal. Finally, plugin “qiime 
feature-classifi er classify-sklearn” was used to assign 
taxonomy with Silva 132 database (16S rRNA gene; 
97% similarity level) trained by the primers used in 
this study (Quast et al., 2012). 

 Nitrosopumilales and Marine Group III (MG-III) 
were the focus of analysis. These orders were aligned 
against the GenBank database in National Center for 
Biotechnology Information (NCBI, http://www.ncbi.
nlm.nih.gov) data and the top-hit sequence was 

downloaded for each ASV. The cloned and ASV 
sequences of Nitrosopumilales and MG-III were used 
to construct the phylogenetic trees, respectively by 
using the neighbor-joining (NJ) methods and 
MEGA-X with Tanura-Nei model (Kumar et al., 
2018). The tree topologies were checked by 1 000 
bootstrap. 

 2.4 Statistical analysis 

 For diversity analysis, the ASVs table was used to 
calculate the alpha and beta diversities in R v4.0 (R 
Core Team, 2013). Package picante was applied to 
calculate the diversity and richness indexes (Shannon, 
Chao1, and Simpson) (Lee and Chao, 1994; Kembel 
et al., 2010). Alpha diversity indexes were analyzed 
with the function “ggsignif” in the “ggplot2” package 
to compare the diversities and richness of archaeal 
communities in the two groups (surface and bottom 
seawater layers) (Wickham and Chang, 2009). Beta 
diversity was explored with the Bray-Curtis 
dissimilarity index by the function “vegdist” of the 
“vegan” package (Bray and Curtis, 1957; Oksanen et 
al., 2010). Complete linkage hierarchical clustering 
based on Bray-Curtis dissimilarity using the 
normalized ASVs matrix was performed using the 
package “vegan” (Oksanen et al., 2010). Non-metric 
multidimensional scaling (NMDS) analysis was also 
conducted with normalized ASVs using the “vegan” 
and “ggplot2” packages (Wickham and Chang, 2009). 
Co-occurrence networks were constructed for 
archaeal communities in all the samples, and ASVs 
affi  liated with Nitrosopumilales, MG-II, and MG-III 
were included in analysis. The correspondences 
between the ASVs and the groups were formed the 
edges, while selected ASVs served as network nodes. 
The edge and the node fi les were formed in R (R Core 
Team, 2013), and the network topology were shaped 
in Cytoscape (Baryshnikova et al., 2016). 

 Redundancy analysis (RDA) combined with 999 
Monte Carlo permutation was employed with “vegan” 
package in R to analyze the infl uence of environmental 
factors on archaeal communities (Oksanen et al., 
2010). Hellinger was used to standardize the ASV 
data and the dissimilarity in environmental factors 
was log-transformed. A heatmap was plotted to 
visualize the Spearman correlations between the 
environmental factors and ASVs of Nitrosopumilales 
with “pheatmap” package in R (Wickham and Chang, 
2009). Principal component analysis (PCA) was 
performed with “vegan” package in R based on the 
relative abundance of diff erent individual pathways to 
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analyze the relationship among archaeal communities 
and environmental factors (Oksanen et al., 2010). 
Hellinger was also used to standardize the relative 
abundance of pathways. 

 2.5 Prediction of functionality of archaeal 
communities 

 Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt2) 
was used to predict the functional potential of 
prokaryotic community based on marker genes, 
particularly 16S rRNA genes (Ye and Doak, 2009). 
ASV sequences were used to clustered into a reference 
tree to predict functions, which were pre-calculated 
for genes in databases including Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and Clusters of 
Orthologous Groups of proteins (COG). Script 
“picrust2_pipeline.py” was used to predict the 
functions of the archaeal ASVs and received the 
predictions for enzyme commission (EC) number 
metagenome, KEGG orthology (KO) metagenome, 
and pathway abundance. Script “pathway_pipline.
py” was employed to collapse the predictions at the 
level of the individual pathways. Linear discriminant 
analysis eff ect size (LEfSe) was used to test the data 
for statistical signifi cance, and biological consistency 
was applied to identify diff erentially abundant 
pathways between the surface and bottom seawaters 
(Segata et al., 2011). Cladogram plot was presented 
hierarchically with category, subcategory, and 
individual pathways. Linear discriminant analysis 
(LDA) scores were calculated, and the barplots for 
the relative abundance of individual pathways were 
displayed. PCA biplot was constructed based on 
relative abundance of individual pathways to 
understand the relationship among archaeal 
communities and environmental factors. 

 3 RESULT 

 3.1 Environmental factors in seawaters 

 The physicochemical parameters of 24 samples 
from 12 sites are summarized in Table 1. Most 
environmental factors changed vertically in the 12 
sites (Supplementary Fig.S1). Temperature, pH, and 
the concentrations of COD, NO 2 ̄, NO 3 ̄, NH 4 +, and DO 
in the surface layers were signifi cantly higher than 
those in the bottom ones ( P <0.01), whereas salinity 
and the concentration of PO     43ˉ     in the surface layers 
were signifi cantly lower than those in the bottom ones 
( P <0.001). In this study, the DO concentration in the 

surface water layers was greater than 4 mg/L, whereas 
that in the bottom layers was less than 2.6 mg/L. In 
accordance with the defi nitions (Li et al., 2011), the 
surface layers were called oxic ones, and the bottom 
layers were called hypoxic zones. 

 3.2 Diversity of archaeal community and 
community comparison 

 The 24 samples yielded 782 095 high quality 
archaeal sequences ranging from 23 734 to 38 164 
(Supplementary Table S1). A total of 121 ASVs were 
generated from the 24 samples at a 97% similarity 
level. Normalized Shannon and Chao1 indexes were 
used to represent the diversity and richness, 
respectively. The Shannon index of archaea ranged 
from 1.62 to 3.83, and its Chao1 index ranged from 
24 to 48 (Supplementary Table S1). The Shannon and 
Chao1 indexes in the bottom layers were signifi cantly 
higher than those in the surface layers ( P <0.05, 
Wilcoxon test, Supplementary Fig.S2), indicating that 
the bottom layers had higher archaeal diversity and 
richness than the surface ones. 

 Beta diversity was used to explore the transition of 
archaeal diversity in diff erent environments. 
Hierarchical clustering dendrogram showed the 
separation of archaeal community composition from 
the surface layers to the bottom layers (Fig.2a). 
NMDS analysis also separated the samples from the 
depth by the fi rst axis (Fig.2b). Analysis of similarity 
(ANOSIM) tested the dissimilarity of all the samples 
based on the Bray-Curtis distance and also confi rmed 
the signifi cant diff erence in the archaeal community 
composition between the depth groups ( R =0.992 6, 
 P =0.001). 

 3.3 Taxonomic assignment 

 All sequences were classifi ed into two main phyla, 
Euryarchaeota and Thaumarchaeota (99.8%–100% of 
the total population), with a few belonging to 
Crenarchaeota, Diapherotrites, Hydrothermarchaeota, 
and Nanoarchaeaeota. The two major phyla displayed 
diff erent distribution patterns in the two layers of the 
CRE (Fig.3a). Euryarchaeota ( P <0.001) accounted 
for the most abundant proportion of archaea in the 
surface samples, and Thaumarchaeota ( P <0.001) was 
the most enriched in the bottom zones. The archaeal 
communities at the class level mainly belonged to two 
main classes: Thermoplasmata and Nitrososphaeria, 
which are affi  liated to Euryarchaeota and 
Thaumarchaeota, respectively (Supplementary Table 
S2). Some rare taxa mostly existed in the bottom 
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layers. For example, Bathyarchaeia was found in 
C4B, D5B, F3B, and F4B, and Woesearchaeia was 
observed in C5B and D5B. At a fi ne taxonomic 
resolution, MG-II and Nitrosopumilales were 
prevalent across all samples. MG-II was relatively 
abundant in the surface layers, and Nitrosopumilales 
was more predominant in the bottom ones. In all 
samples, the most abundant order in E5S was MG-II 
(93.97%), and in C3B was Nitrosopumilales 
(74.87%). Notably, MG-III ( P <0.001), which is 
affi  liated to Euryarchaeota, was highly abundant in 
the bottom layers. C4B contained relatively high 
percentages of MG-III (9.14%), followed by F5S 
(4.95%). 

 The co-occurrence network also showed the 
distribution of the ASVs of MG-II, MG-III, and 
Nitrosopumilales in the two layers (Supplementary 
Fig.S3). Most ASVs of MG-II were distributed in 
both layers, while Nitrosopumilales and MG-III were 
mainly distributed in the bottom seawater. 

 3.4 Correlation between archaeal communities 
and environmental variations 

 From all samples, 40 ASVs of MG-II, 4 ASVs of 
MG-III, and 25 ASVs of Nitrosopumilales were 
extracted for reducing complexity and eliminating 
rare taxa. RDA was used to analyze the variation of 
archaeal communities as a function of environmental 
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factors including salinity, temperature, DO, NO 3 ̄, 
NO 2 ̄  , NH 4 +  , COD, PO     43ˉ      , and pH. RDA1 and RDA2 
explained 80.81% of the total variations (Fig.4). On 
the horizontal axis (RDA1, 74.3% of constrained 
variability), the most infl uential constraining variable 
was temperature (biplot score=-0.97) followed by 
DO (biplot score=-0.93) and salinity (biplot 
score=-0.89). The sites were distinctly separated into 
two groups (surface and bottom layers,  P <0.001) by 
RDA1. F5S relatively deviated from the 95% 
confi dence interval of the surface groups, and the 
bottom groups gathered closely. On the horizontal 
axis (RDA2, 8.03% of constrained variability), the 
most infl uential constraining variable was NO 3 ̄ 
(biplot score=0.50), followed by PO     43ˉ     (biplot 
score=0.44). Function “envfi t” was used to measure 
each factor onto an ordination. Salinity and 
temperature were signifi cantly related to the archaeal 
community (Supplementary Table S3,  P <0.001). In 
addition, the ASVs of MG-II and Nitrosopumilales 
was separated by RDA1 ( P <0.05), indicating that 
most ASVs of the two groups prefer diff erent biotopes. 

 A heatmap of Nitrosopumilales (25 ASVs) and the 
environmental factors was constructed to determine 
the relationship between Nitrosopumilales and 
environmental factors (Supplementary Fig.S4). The 
ASVs were sorted according to the relative abundance. 
Except for ASV24, ASV8, and ASV55, the top 20 
ASVs were positively related to PO     43ˉ    , depth, and 
salinity and negatively related to other factors. Except 
for ASV24, most of the top 10 ASVs were correlated 
with all the environmental factors (| R |>0.40) and 
displayed coordinated relationships with each factor. 

 3.5 Phylogenetical diversity of Nitrosopumilales 
and MG-III 

 Compared with archaeal communities in the 
surface water, Nitrosopumilales and MG-III were 
more abundant in the bottom layers. The NJ trees of 
the ASVs affi  liated to Nitrosopumilales and MG-III, 
respectively. The Nitrosopumilales phylogenetic tree 
identifi ed two major clusters (Fig.5a). Most ASVs 
were relatively abundant in the bottom layers, and 
others were abundant in the surface layers. For 
example, ASV24, ASV55, ASV36, and ASV61 were 
more abundant in the surface layers than in the 
bottoms and were clustered in another branch. In 
addition, most sequences of genetically close species 
downloaded from the NCBI nt database were derived 
from deep seawater, sediments, or the hypoxic zones, 
such as the northeast Pacifi c Ocean and the northern 
Gulf of Mexico. 

 The MG-III phylogenetic tree also identifi ed two 
clusters (Fig.5b). The sequences in one cluster were 
mainly recovered from the deep seas, and those in the 
other cluster were from the surface seawater or 
hypoxic areas. ASV50, which was assigned into the 
second cluster, occurred in both layers. 

 3.6 Predicted metabolic potentials 

 PICRUSt2 analysis detected 78 individual 
pathways. LEfSe was used to reveal the signifi cant 
diff erences of the metabolic functionality between the 
two water layers (Fig.6, Supplementary Table S3). In 
the functional categories, the surface layers were 
enriched with genetic information processing 
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 Fig.3 Archaeal community compositions at diff erent taxonomic levels in each seawater sample 
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( P <0.001), and the bottom layers were enriched with 
environmental information processing ( P <0.001), 
cellular processes ( P <0.001), and organismal systems 
( P <0.001). Several functional subcategories, including 
“cell growth and death”, “folding, sorting and 
degradation”, “translation; amino acid metabolism”, 
“carbohydrate metabolism”, “metabolism of 
terpenoids and polyketides” and “nucleotide 
metabolism” were signifi cantly higher ( P <0.001) in 
the surface layers compared to the bottom ones. 
Subcategories, such as “cell motility,” “membrane 
transport,” “replication and repair,” “biosynthesis of 
other secondary metabolites,” “energy metabolism; 
glycan biosynthesis and metabolism,” “lipid 
metabolism; metabolism of cofactors and vitamins,” 

“metabolism of other amino acids,” and “xenobiotics 
biodegradation and metabolism” were enriched in the 
bottom layers ( P <0.001). The boxplot showed the 
signifi cant enrichment in the bottom layers 
(Supplementary Fig.S5,  P <0.001). Functional 
subcategories, such as replication and repair, amino 
acid metabolism, carbohydrate metabolism and 
metabolism of cofactors and vitamins, were abundant 
in the bottom layers. Individual pathways, such as 
chemotaxis, basal transcription factors, sulfur 
metabolism, biotin metabolism, and biosynthesis of 
vancomycin group antibiotics, were signifi cantly 
enriched in the bottom layers ( P <0.001). The PCA 
plot constructed based on relative abundance of 
diff erent metabolisms presented the clustering of the 
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 Fig.5 Phylogenetic tree based on the 16S rRNA gene from the ASVs of Nitrosopumilales (a) and Marine Group III (b) 
detected in our study 
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samples. All surface and bottom samples formed two 
distinct clusters by the fi rst axis (Supplementary Fig.
S6,  P =0.001). Similar clustering was observed in the 
RDA and NMDS analysis (Figs.2 & 4) which was 
conducted because of the archaeal community 
composition. A similar trend was obtained with 
diff erent statistical analyses based on community 
composition and predicted community function, 
indicating that diff erent archaeal communities refl ect 
the community function. In addition, the environmental 
factors driving the predicted metabolic pathways were 
similar to those actuating the taxonomic composition. 
Temperature and salinity were also the main important 
chemical factors that explained most of the variations 
( P <0.01,  R  2 >0.8; Supplementary Tables S4 & S5). 

 4 DISCUSSION 

 4.1 Comparison of archaeal communities between 
surface and bottom water layers 

 In general, the ocean is characteristically stratifi ed 
as refl ected in the vertical distributions of zooplankton 
or microbial communities (Banse, 1964; DeLong et 
al., 2006). 16S rRNA gene sequencing was performed 
on 12 seawater samples from the surface layers 
(DO≥3 mg/L) and 12 seawater samples from the 
bottom layers (DO<3 mg/L) to reveal the features of 
the archaeal community structure in the CRE. The 
environmental factors were measured in situ. The two 
layers showed signifi cantly diff erent environmental 
factors and archaeal communities ( P <0.01; Fig.2, 
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Supplementary Figs.S1 & S2). The archaeal richness 
and diversity were higher in the bottom water 
( P <0.01) than the surface layers, suggesting the 
presence of complex archaeal communities in deep 
layers. Similar results of the microbial community 
were also found in the saltwater of the Zhujiang 
estuary and in the same sites of our study (Liu et al., 
2014, 2015; Wu et al., 2019). However, the bottom 
layers in this work were under hypoxia, which can 
vary the composition of microbial loop (Naqvi et al., 
2000). The archaeal community is less abundant in 
the hypoxic seawater, which is relative to oxic layers 
(He et al., 2016). Considering that the samples were 
obtained from two diff erent depths, relabeling them 
as hypoxic and hypoxic groups based solely on the 
DO values was inappropriate. RDA analysis showed 
that salinity and temperature were the most important 
environmental factors to the archaeal community. 
Therefore, we speculated that DO value was not the 
most important factor for the vertical distribution of 
the archaeal community in the CRE. Liu et al. (2011) 
also found that salinity has a remarkable eff ect on 
archaeal community composition. In the present 
work, although the surface and bottom samples were 
distinctly divided into two branches during clustering 
(Fig.2a), the archaeal community compositions in the 
surface samples were not uniform (Fig.2b) due to 
some environmental factors (Supplementary Fig.S1). 
The quartile deviations of NO 3 ̄  , DO, salinity, and NH 4 +   
were long in the surface group, indicating that the 
values of the measured factors were largely diff erent 
within the surface samples (Supplementary Fig.S1). 
In F5S, salinity was the highest in the surface group, 
and the concentrations of NO 2 ̄ and NO 3 ̄   were the 
lowest among all surface samples. RDA analysis also 
presented that the surface sample sites were relatively 
dispersive (Fig.4). 

 In line with previous studies in the CRE and the 
Zhujiang River estuary (Liu et al., 2014, 2020), MG-
II was predominant in the surface seawater, and 
Thaumarchaeota and MG-III prevailed in deep layers 
(López-García et al., 2001; DeLong et al., 2006; 
Zhang et al., 2015). Surprisingly, these results were 
completely diff erent from previous fi ndings in the 
CRE. Zeng et al. (2007) and Liu et al. (2011) proposed 
that MG-I is dominant in the surface seawater, and 
MG-II is abundant in the bottom layers. Massana et 
al. suggested that Euryarchaeota might be more 
limited in the temperate zone (Massana et al., 2000) 
and dominated in the middle and deeper seawater 
(Massana et al., 1997). Some studies also found the 

similar phenomenon (DeLong et al., 1994). A research 
found that the MG-II were dominant in planktonic 
archaea throughout the water column in the 
northeastern South China Sea (Liu et al., 2017) 
possibly due to strong vertical mixing (Tian et al., 
2009; Jiao et al., 2014). Besides, Orsi et al. (2015) 
also proposed that MG-II preferred to attach to 
particles. Considering that the CRE is often strongly 
infl uenced by various ocean currents and water 
masses in summer, we suggested that the previous 
results might also be related to the current fl uctuation 
or the preference of archaea for particles. 
Unfortunately, these speculations have not been 
confi rmed and further verifi cation. MG-II contributes 
more to archaeal assemblages from the surface than 
from deeper waters (López-García et al., 2001; Herndl 
et al., 2005; DeLong et al., 2006; Tseng et al., 2015). 
Similar to our results, Liu et al. (2009) found that 
MG-II showed decreased diversity with the increase 
of depth in the Gulf of Mexico, and Liu et al. (2014) 
has reported that MG-II were more predominant in 
the surface saltwater sites of Zhujiang River estuary. 
In phylogenetic analysis based on the 16S rRNA 
genes (Massana et al., 2000; Martin-Cuadrado et al., 
2008; Belmar et al., 2011), MG-II was classifi ed into 
two major clusters: MG-IIA, which was more 
common in the surface seawaters (Frigaard et al., 
2006), and MG-IIB, which is abundant in deep water 
(Hugoni et al., 2013). The distribution of MG-II 
(ASVs) in the RDA plot also displayed diff erent 
preferences of environmental factors, and most were 
negatively related to salinity and positively related to 
DO and temperature (Fig.4). The wide distribution of 
MG-II indicated its extensive adaption to diverse 
marine habitats (Zhang et al., 2015). 

 MG-III, another dominant family of Euryarchaeota, 
presented relatively higher abundance in the bottom 
layers. A few studies confi rmed that MG-III is mainly 
retrieved from deeper seawater (Galand et al., 2009; 
Tseng et al., 2015; Tarn et al., 2016). Similar to MG-
II, no strain of MG-III has been cultured, which 
explains its unclear ecological and physiological 
characteristics. The phylogenetic structure of MG-III 
showed that most referenced sequences were mainly 
from the deep sea or hypoxic zones (Fig.5b). ASV50 
occurred in both groups, and the clustered sequences, 
JX281472 (unpublished) and JF715301, were also 
from the surface water layers in the eastern South 
Pacifi c Ocean seawater (Belmar et al., 2011). Six 
novel MG-III genome sequence bins were recovered 
in the photic zone (Haro-Moreno et al., 2017), and a 
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small amount of MG-III was found in surface Arctic 
waters and the South China Sea (Galand et al., 2009; 
Li et al., 2021). Notably, F5S possessed the highest 
amount of MG-III among all the surface samples and 
detached from the surface group in the RDA plot 
(Figs.3 & 4). Among the environmental factors, 
salinity in F5S was the highest among the surface 
samples, and the concentrations of NO 3 ̄   and NO 2 ̄ in 
F5S were extremely lower than in other surface 
samples. F5S processed similar environmental status 
to the bottom layers, thus explaining why MG-III is 
relatively abundant in the site. Metagenomics analysis 
revealed that the DNA fragments of MG-III genes 
resembled those in ammonia-oxidizing archaea 
(AOA), indicating that some members of MG-III may 
oxidize ammonia (Martín-Cuadrado et al., 2007). In 
general, we speculated that environmental factors 
aff ect the archaeal community components. 

 Thaumarchaeota had a niche preference for the 
hypoxic bottom layers, and this fi nding is in agreement 
with several works (Massana et al., 2000; Molina et 
al., 2010; Beman et al., 2012; Tolar et al., 2013). 
Thaumarchaeota, initially known as mesophilic 
Crenarchaeota, is a new phylum (Brochier-Armanet 
et al., 2008). Most of the studies proposed that marine 
Thaumarchaeota are chemolithoautotrophs, and all 
cultured representatives of Thaumarchaeaota are 
AOA (Pester et al., 2011; Hatzenpichler, 2012). 
Nitrosopumilales, which also belong to AOA, were 
the most abundant order of Thaumarchaeota in the 
previous study (Könneke et al., 2005). AOA and AOB 
play important roles in the ocean nitrogen cycle. 
Moreover, AOA dominates in many environments, 
indicating that AOA play more important role in 
ammonia oxidation (Albers et al., 2004; Shen et al., 
2008; Kembel et al., 2010; Jin et al., 2011; R Core 
Team, 2013; Liu et al., 2017). For the correlations 
between each ASV of Nitrosopumilales and the 
environmental factors (Supplementary Fig.S4), most 
ASVs were positively related with depth and salinity, 
and negatively related with temperature, DO, pH, and 
the concentration of NO 3 ̄  , NO 2 ̄, and PO     43ˉ    . 
Environmental factors, such as salinity, temperature, 
nitrate concentration, and total nitrogen, are the 
driving forces aff ecting the diversity of AOA 
communities (Cao et al., 2011; Yu et al., 2016). A 
small amount of Nitrosopumilales also existed in the 
surface layers (Fig.3b). As shown in the phylogenetic 
tree (Fig.5a), several ASVs, such as ASV24, ASV55, 
and ASV61, were relatively abundant in the surface 
layers and clearly clustered in the upper topologic 

structure. Some referenced sequences were also found 
from the surface waters. ASV24 ( Candidatus  
Nitrosopumilus) was one of the top ASVs of 
Nitrosopumilales in the relative abundance. The 
clustered sequences FJ355404 and JQ226368 were 
detected from the surface water in Industrial Canal 
(Amaral-Zettler et al., 2008) and 10-m seawater in the 
Northern Pacifi c Ocean oxygen minimum zone, 
respectively. ASV36 ( Candidatus  Nitrosoarchaeum) 
and ASV61 ( Candidatus  Nitrosotenuis) were also 
closely clustered with KY356879 and KY356871, 
respectively, which were obtained from the nitrate- 
and radionuclide-contaminated groundwater. Hence, 
several relatively abundant ASVs of Nitrosopumilales 
in surface layers, which have strong adaptability, may 
be injected from terrestrial freshwater rivers and even 
industrial swages to the coastal surface seawater 
(Amaral-Zettler et al., 2008; Ren et al., 2019). 
Furthermore, some researches show that  Candidatus  
Nitrosotenuis uzonensis and  Nitrosopumilus  sp. are 
associated with low-salinity and freshwater 
environments (Mosier and Francis, 2008; Restrepo-
Ortiz et al., 2014; Alves et al., 2018). Most of the 
ASVs of Nitrosopumilales in this study exhibited 
high similarity to the uncultured archaeal sequences 
from other environments, such as the Northeast 
Pacifi c Ocean, the northern Gulf of Mexico, Atlantic 
Ocean, and South China Slope. Therefore, these 
ASVs did not represent the special groups in the CRE 
and constantly adapt to diff erent environments 
worldwide. 

 4.2 Metabolic prediction of archaeal community in 
the hypoxic layers 

 Identifying the archaeal communities responding 
to hypoxia is vital to understand the structure and 
function of estuarine ecosystems. Here, PICRUSt2 
was applied to predict the archaeal metabolic function 
in the CRE. Comparison of the metabolic pathways in 
diff erent water layers revealed many relative abundant 
pathways were shown in the hypoxic bottom layers. 

 The replication and repair of genetic information 
processing were enriched in the bottom layers 
( P <0.001; Supplementary Fig.S5). The rugged 
environment condition in the bottom layers, such as 
low pH, high salinity, and hypoxia, acted as the DNA-
damaging agents to accelerate DNA damage (Zatopek 
et al., 2018). Owing to the toxic nature of DNA lesions, 
organisms have evolved several DNA replication and 
repair pathways. Base excision repair, homologous 
recombination, mismatch repair, and nucleotide 
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excision repair were abundant in the bottom layers 
( P <0.001; Supplementary Fig.S5). Therefore, under 
environmental pressure, archaea may need powerful 
DNA replication and repair compounds to ensure 
genomic fi delity (Shin et al., 2014). 

 The membrane transport and signal transduction of 
environmental information processing were relatively 
abundant in the bottom layers ( P <0.001; 
Supplementary Fig.S5), especially adenosine-
triphosphate (ATP) binding cassette (ABC) 
transporters pathways. Diff erent from most bacteria, 
archaea prefer primary ATP-driven uptake systems 
for carbon and energy sources (Konings et al., 2002). 
The high affi  nity of the binding proteins may enable 
them to survive in habitats with low carbon sources 
such as sugars and peptides (Albers et al., 2004). 
Konings et al. (2002) suggested that archaeal ABC 
sugar transporters are equipped with an exceptionally 
high affi  nity for the subnanomolar substrate, which is 
benefi cial for archaea to compete with others in harsh 
environments and thereby maximize their ability to 
absorb nutrients. Here, the starch and sucrose 
metabolism and the degradation of some amino acids 
were relatively vigorous in the bottom hypoxic layers 
( P <0.001) possibly because the archaea consume 
these substrates for energy through ABC transporters. 

 Some subcategories pathways affi  liated to 
metabolism enriched in the bottom layers, including 
amino acid metabolism, carbohydrate and lipid 
metabolism, metabolism of cofactors and vitamins, 
and energy metabolism. Arginine and methionine are 
sulfur-containing amino acids. In hypoxic 
environments, some organic sulfi des, such as 
methanethiol and dimethyl sulfi de, can be derived 
from the degradation of sulfur-containing amino acids 
(Kadota and Ishida, 1972; Lohrenz et al., 2008). 
Sulfur metabolism was vigorous in the bottom layers 
( P <0.001, Supplementary Fig.S5), which was 
consistent with other studies (Liu et al., 2014; Wang 
et al., 2016; Wu et al., 2019). In addition to being the 
basic structure of protein synthesis, amino acids are 
also precursors for the production of secondary 
metabolites. The synthesis of streptomycin and 
vancomycin was also vigorous in the bottom layer. 
Vancomycin is a class of glycopeptide antibiotics that 
eff ectively inhibit the biosynthesis of bacterial 
peptidoglycans (Khelaifi a and Drancourt, 2012), and 
streptomycin is a class of amino sugar antibiotics, that 
prevent bacterial ribosomes or their reaction substrates 
(Weisblum and Davies, 1968). These antibiotics may 
be protective agents that archaea could use to maintain 

their growth in complex environments. Some sponge 
archaeal communities could produce tetracycline 
with protective properties against potential sponge 
pathogenic microorganisms and competitors (Polónia 
et al., 2014). In this work, glycan biosynthesis was 
enriched in the bottom layers. The cell surface of 
prokaryotes is particularly rich in glycans, which are 
glycosylated with the proteins and play fundamental 
roles in cell physiology (Doyle, 2002). In archaea, 
N-linked glycosylation is the most common and 
mainly occurrs on S-layer proteins (Mescher and 
Strominger, 1976; Kärcher et al., 1993; Schäff er and 
Messner, 2001) and fl agellins (Voisin et al., 2005; 
Kelly et al., 2009). The S-layers also have two 
noteworthy functions. First, they can minimize 
unspecifi c binding and are important for nutrient 
absorption in harsh environments (Pohlschroder et 
al., 2018). Second, they can also reduce fl ow resistance 
to promote archaea-driven movement due to their 
structural characteristics (Sleytr et al., 2014). These 
functions are necessary for the archaea that live in 
harsh environments to maintain their own growth and 
division. The current results also showed that protein 
export and some amino acids synthesis pathways 
were vigorous and could satisfy the S-layer synthesis. 

 Xenobiotics biodegradation and metabolism, one 
of the functional subcategories, were abundant in 
seawater (Jain et al., 2005). In the bottom layers, the 
degradation pathways of aminobenzoate benzoate, 
chlorocyclohexane, and chlorobenzeneare were 
enriched ( P <0.001) (Battersby, 1990). These organic 
compounds are widely used in many industries 
(paints, textiles, wood, and chemistry) and agriculture 
(herbicides and pesticides) and have been considered 
as important environmental contaminants. The CRE 
is adjacent to the Changjiang River Delta area with 
developed industry and agriculture, which is highly 
aff ected by human activities. The above organic 
compounds might fl ow into the aquatic environment 
mainly through agricultural and industrial runoff , and 
gradually sink to the bottom (Embrandiri et al., 2016). 
These fi ndings indicated that archaeal communities 
could be regarded as xenobiotic biodegradants for 
environmental remediation. The archaea community 
could also obtain carbon, nitrogen, and energy to 
adapt the harsh niches (Polónia et al., 2018; Wang et 
al., 2018). 

 5 CONCLUSION 
 The archaeal communities in the surface and 

bottom layers of the CRE were detected on July 2016. 
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Distinct archaeal community structure was observed 
between the two layers. At the taxonomic levels, MG-
II dominated in the surface layers, whereas 
Nitrosopumilales was enriched in the bottom water. 
However, the results were completely diff erent from 
previous studies in the CRE. Salinity and temperature 
were the most important environmental factors 
aff ecting the archaeal community. In addition, 
metabolic prediction revealed that the functional 
subcategories such as replication and repair, 
membrane transport, and xenobiotics biodegradation 
and others, indicating that archaea have a strong 
ability to protect themselves against harsh 
environmental conditions. These fi ndings expend the 
understanding of the archaeal structure and functions 
in diff erent water layers, even in the hypoxic zones in 
the CRE, and may contribute to further works of the 
archaeal community in the CRE. 
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