Cite this paper:
Zhangxi HU, Xiaoying SONG, Jinxiu WANG, Zhe TAO, Yuanyuan SUN, Yuhang LI, Yuyang LIU, Yunyan DENG, Lixia SHANG, Zhaoyang CHAI, Yingzhong TANG. Reviving and characterizing three species of dinoflagellate cysts dormant for about 70 years in the East China Sea: Biecheleria brevisulcata, Biecheleriopsis adriatica, and Scrippsiella donghaienis[J]. Journal of Oceanology and Limnology, 2022, 40(6): 2292-2311

Reviving and characterizing three species of dinoflagellate cysts dormant for about 70 years in the East China Sea: Biecheleria brevisulcata, Biecheleriopsis adriatica, and Scrippsiella donghaienis

Zhangxi HU1,2,3,6, Xiaoying SONG2,7, Jinxiu WANG2,7, Zhe TAO2,7, Yuanyuan SUN4, Yuhang LI5, Yuyang LIU2, Yunyan DENG2,3,6, Lixia SHANG2,3,6, Zhaoyang CHAI2,3,6, Yingzhong TANG2,3,6
1 College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China;
2 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
3 Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
4 CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
5 Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
6 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
7 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Many marine dinoflagellates can form resting cysts as a part of their life cycle, and the cysts could be buried in sediment and remained viable for as long as over 150 years. However, only a very limited number of cyst species have been revived from long-buried sediments and investigated in regard to a possible shift in the intra-specific genetic structure of a species detected from the historical record at a particular location. Here, we report a successful germination of three species of resting cysts that were sampled from the depth dated back to 1941±18 AD from a 44-cm sediment core from the East China Sea. Seven isolates were established from germination of single cyst isolation or multi-cyst germinations. LSU rRNA gene or ITS sequences of these strains were obtained, then they were identified to be Biecheleria brevisulcata (five strains), Biecheleriopsis adriatica (one strain), and Scrippsiella donghaienis (one strain) in terms of morphology and rRNA gene sequence. Biecheleria brevisulcata strain 1, Bps. adriatica strain 21, and S. donghaienis strain 23 were examined in detail with light microscope (LM) and scanning electron microscope (SEM), and analyzed with high performance liquid chromatography (HPLC) for their pigment compositions, and genetic diversity. We also confirmed the presence of a resting cyst of Bps. adriatica in the field for the first time. The LSU rRNA gene-based genetic distances of Bps. adriatica from that obtained from water sample, single-cell PCR sequencing for the cysts isolated from the surface sediment of the same sea area and that reported from other regions during the recent years, and ITS-based genetic distances of S. donghaienis from that obtained from cysts isolated from the surface sediment of the same location and that reported from other regions during the recent years indicated that the intra-specific genetic structure of each species in the sampling area may have shifted during the last 70 years. Our work confirms that B. brevisulcata, Bps. adriatica, and S. donghaienis, all described as new species around 2010, have inhabited the East China Sea for about 70 years. The present work reports for the first time the revival of dinoflagellate resting cysts long-buried in the coastal sediments of China, which facilitates further study on the historical occurrences of other harmful dinoflagellates and their relevance to the regional climate and environmental changes in China.
Key words:    core sediment|dinoflagellate resting cyst|germination|Biecheleria brevisulcata|Biecheleriopsis adriatica|Scrippsiella donghaienis   
Received: 2022-03-14   Revised:
Tools
PDF (3372 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Zhangxi HU
Articles by Xiaoying SONG
Articles by Jinxiu WANG
Articles by Zhe TAO
Articles by Yuanyuan SUN
Articles by Yuhang LI
Articles by Yuyang LIU
Articles by Yunyan DENG
Articles by Lixia SHANG
Articles by Zhaoyang CHAI
Articles by Yingzhong TANG
References:
Anderson D M, Wall D. 1978. Potential importance of benthic cysts of Gonyaulax tamarensis and G. excavata in initiating toxic dinoflagellate blooms. Journal of Phycology, 14(2):224-234, https://doi.org/10.1111/j.1529-8817.1978.tb02452.x.
Benico G A, Takahashi K, Lum W M et al. 2019. First report of Biecheleriopsis adriatica in Bolinao, northwestern Philippines and its wide distribution in Southeast Asia and adjacent waters. Philippine Journal of Natural Sciences, 24: 34-41.
Bolch C J S. 1997. The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia, 36(6): 472-478, https://doi.org/10.2216/i0031-8884-36-6-472.1.
Boutrup P V, Moestrup Ø, Tillmann U et al. 2017.Ultrastructure and phylogeny of Kirithra asteri gen. et sp. nov. (Ceratoperidiniaceae, Dinophyceae) -a freeliving, thin-walled marine photosynthetic dinoflagellate from Argentina. Protist, 168(5): 586-611, https://doi.org/10.1016/j.protis.2017.08.001.
Bravo I, Figueroa R I. 2014. Towards an ecological understanding of dinoflagellate cyst functions.Microorganisms, 2(1): 11-32, https://doi.org/10.3390/microorganisms2010011.
Bringué M, Pospelova V, Calvert S E et al. 2016. High resolution dinoflagellate cyst record of environmental change in Effingham Inlet (British Columbia, Canada) over the last millennium. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 787-810, https://doi.org/10.1016/j.palaeo.2015.10.026.
Dai X F, Lu D D, Xia P et al. 2012. A 50-year temporal record of dinoflagellate cysts in sediments from the Changjiang Estuary, East China Sea, in relation to climate and catchment changes. Estuarine, Coastal and Shelf Science, 112: 192-197, https://doi.org/10.1016/j.ecss.2012.07.016.
Dale B, Thorsen T A, Fjellsa A. 1999. Dinoflagellate cysts as indicators of cultural eutrophication in the Oslofjord, Norway. Estuarine, Coastal and Shelf Science, 48(3):371-382, https://doi.org/10.1006/ecss.1999.0427.
Dale B. 2001. The sedimentary record of dinoflagellate cysts: looking back into the future of phytoplankton blooms. Scientia Marina, 65(S2): 257-272, https://doi.org/10.3989/scimar.2001.65s2257.
Daugbjerg N, Hansen G, Larsen J et al. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia, 39(4): 302-317, https://doi.org/10.2216/i0031-8884-39-4-302.1.
de Freitas A D S, Escamilla J H, Barreto C F et al. 2020.Dinocysts as a tool for palaeoenvironmental reconstruction in Vitória Bay, Brazil. Radiocarbon, 62(2): 289-311, https://doi.org/10.1017/RDC.2020.4.
Delebecq G, Schmidt S, Ehrhold A et al. 2020. Revival of ancient marine dinoflagellates using molecular biostimulation. Journal of Phycology, 56(4): 1077-1089, https://doi.org/10.1111/jpy.13010.
Ebenezer V, Medlin L K, Ki J S. 2012. Molecular detection, quantification, and diversity evaluation of microalgae.Marine Biotechnology, 14(2): 129-142, https://doi.org/10.1007/s10126-011-9427-y.
Ellegaard M, Clokie M R J, Czypionka T et al. 2020. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Communications Biology, 3(1):169, https://doi.org/10.1038/s42003-020-0899-z.
Ellegaard M, Ribeiro S, Lundholm N et al. 2013. Using the sediment archive of living dinoflagellate cysts and other protist resting stages to study temporal population dynamics. In: Lewis J M, Marret F, Bradley L R eds.Biological and Geological Perspectives of Dinoflagellates.Geological Society, London. p.149-153.
Ellegaard M, Ribeiro S. 2018. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’.Biological Reviews, 93(1): 166-183, https://doi.org/10.1111/brv.12338.
Ellegren H, Galtier N. 2016. Determinants of genetic diversity.Nature Reviews Genetics, 17(7): 422-433, https://doi.org/10.1038/nrg.2016.58.
Erdner D L, Richlen M, McCauley L A R et al. 2011. Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense. PLoS One, 6(7):e22965, https://doi.org/10.1371/journal.pone.0022965.
Figueroa R I, Estrada M, Garcés E. 2018. Life histories of microalgal species causing harmful blooms:haploids, diploids and the relevance of benthic stages.Harmful Algae, 73: 44-57, https://doi.org/10.1016/j.hal.2018.01.006.
Fritz L, Triemer R E. 1985. A rapid simple technique utilizing calcofluor white M2R for the visualization of dinoflagellate thecal plates. Journal of Phycology, 21(4): 662-664, https://doi.org/10.1111/j.0022-3646.1985.00662.x.
García-Moreiras I, Pospelova V, García-Gil S et al. 2018.Climatic and anthropogenic impacts on the Ría de Vigo(NW Iberia) over the last two centuries: a high-resolution dinoflagellate cyst sedimentary record. Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 201-218, https://doi.org/10.1016/j.palaeo.2018.05.032.
Girault M, Siano R, Labry C et al. 2021. Variable inter and intraspecies alkaline phosphatase activity within single cells of revived dinoflagellates. The ISME Journal, 15(7):2057-2069, https://doi.org/10.1038/s41396-021-00904-2.
Gómez F, López-García P, Takayama H et al. 2015.Balechina and the new genus Cucumeridinium gen. nov.(Dinophyceae), unarmored dinoflagellates with thick cell coverings. Journal of Phycology, 51(6): 1088-1105, https://doi.org/10.1111/jpy.12346.
Gómez F. 2012. A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata). CICIMAR Oceánides, 27(1): 65-140, https://doi.org/10.37543/oceanides.v27i1.111.
Gu H F, Sun J, Kooistra W H C F et al. 2008. Phylogenetic position and morphology of thecae and cysts of Scrippsiella (Dinophyceae) species in the East China Sea. Journal of Phycology, 44(2): 478-494, https://doi.org/10.1111/j.1529-8817.2008.00478.x.
Gu H, Mertens K N, Derrien A et al. 2022. Unravelling the Gonyaulax baltica species complex: cysttheca relationship of Impagidinium variaseptum, Spiniferites pseudodelicatus sp. nov. and S. ristingensis(Gonyaulacaceae, Dinophyceae), with descriptions of Gonyaulax bohaiensis sp. nov, G. amoyensis sp. nov. and G. portimonensis sp. nov. Journal of Phycology, 58(3):465-486, https://doi.org/10.1111/jpy.13245.
Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Proceedings of the 1st Conference on Culture of Marine Invertebrate Animals Greenport. Springer, New York. p.29-60.
Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.
Head M J. 1996. Modern dinoflagellate cysts and their biological affinities. In: Jansonius J, McGregor D C eds. Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Dallas. p.1197-1248.
Hu Z X, Deng Y Y, Luo Z H et al. 2020a. Characterization of the unarmored dinoflagellate Pseliodinium pirum(Ceratoperidiniaceae) from Jiaozhou Bay, China.Phycological Research, 68(1): 3-13, https://doi.org/10.1111/pre.12385.
Hu Z X, Li Z, Deng Y Y et al. 2020b. Morphology, ultrastructure, and molecular phylogeny of the unarmoured dinoflagellate Kirithra sigma sp. nov.(Ceratoperidiniaceae, Dinophyceae). Phycologia, 59(5):385-396, https://doi.org/10.1080/00318884.2020.177166 0.
Hu Z X, Liu Y Y, Deng Y Y et al. 2022. The notorious harmful algal blooms-forming dinoflagellate Prorocentrum donghaiense produces sexual resting cysts, which widely distribute along the coastal marine sediment of China.Frontiers in Marine Science, 9: 826736, https://doi.org/10.3389/fmars.2022.826736.
Hu Z X, Xu N, Gu H F et al. 2021. Morpho-molecular description of a new HAB species, Pseudocochlodinium profundisulcus gen. et sp. nov., and its LSU rRNA gene based genetic diversity and geographical distribution.Harmful Algae, 108: 102098, https://doi.org/10.1016/j.hal.2021.102098.
Hughes A R, Inouye B D, Johnson M T J et al. 2008.Ecological consequences of genetic diversity. Ecology Letters, 11(6): 609-623, https://doi.org/10.1111/j.1461-0248.2008.01179.x.
Kang W, Wang Z H, Fu Y H et al. 2009. Investigation on germination of phytoplankton resting cells in sediment traps collected from Daya Bay, South China Sea. China Environmental Science, 29(12): 1285-1290. (in Chinese with English abstract)
Kang W, Wang Z H. 2018. Identification of a marine woloszynskioid dinoflagellate Biecheleriopsis adriatica and germination of its cysts from southern Chinese coasts.
Journal of Environmental Sciences, 66: 246-254, https://doi.org/10.1016/j.jes.2017.04.031.
Katoh K, Misawa K, Kuma K I et al. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14):3059-3066, https://doi.org/10.1093/nar/gkf436.
Keafer B A, Buesseler K O, Anderson D M. 1992. Burial of living dinoflagellate cysts in estuarine and nearshore sediments. Marine Micropaleontology, 20(2): 147-161, https://doi.org/10.1016/0377-8398(92)90004-4.
Kim S Y, Roh Y H, Shin H H et al. 2018. Decadal-scale variations of sedimentary dinoflagellate cyst records from the Yellow Sea over the last 400 years. Estuarine, Coastal and Shelf Science, 200: 91-98, https://doi.org/10.1016/j.ecss.2017.10.006.
Klouch K Z, Schmidt S, Andrieux-Loyer F et al. 2016.Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France).FEMS Microbiology Ecology, 92(7): fiw101, https://doi.org/10.1093/femsec/fiw101.
Kong F Z, Yu R C, Zhang Q C et al. 2012. Pigment characterization for the 2011 bloom in Qinhuangdao implicated “brown tide” events in China. Chinese Journal of Oceanology and Limnology, 30(3): 361-370, https://doi.org/10.1007/s00343-012-1239-z.
Kremp A, Elbrächter M, Schweikert M et al. 2005.Woloszynskia halophila (Biecheler) comb. nov.: a bloom-forming cold-water dinoflagellate co-occurring with Scrippsiella hangoei (Dinophyceae) in the Baltic Sea. Journal of Phycology, 41(3): 629-642, https://doi.org/10.1111/j.1529-8817.2005.00070.x.
Kremp A, Hinners J, Klais R et al. 2018. Patterns of vertical cyst distribution and survival in 100-year-old sediment archives of three spring dinoflagellate species from the northern Baltic Sea. European Journal of Phycology, 53(2): 135-145, https://doi.org/10.1080/09670262.2017. 1386330.
Kumar S, Stecher G, Li M et al. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549, https://doi.org/10.1093/molbev/msy096.
Lee B, Park M G. 2020. Distribution and genetic diversity of the toxic benthic dinoflagellate genus Ostreopsis in Korea.Harmful Algae, 96: 101820, https://doi.org/10.1016/j.hal.2020.101820.
Li L, Wang Y J, Liu D Y. 2021. Phytoplankton shifts in the central Bohai Sea over the last 250 years reflect eutrophication and input from the Yellow River. Ecological Indicators, 126:107676, https://doi.org/10.1016/j.ecolind.2021.107676.
Limoges A, Van Nieuwenhove N, Head M J et al. 2020.A review of rare and less well known extant marine organic-walled dinoflagellate cyst taxa of the orders Gonyaulacales and Suessiales from the northern Hemisphere. Marine Micropaleontology, 159: 101801, https://doi.org/10.1016/j.marmicro.2019.101801.
Lin S H, Hu Z X, Deng Y Y et al. 2020. An assessment on the intrapopulational and intraindividual genetic diversity in LSU rDNA in the harmful algal bloomsforming dinoflagellate Margalefidinium (=Cochlodinium)fulvescens based on clonal cultures and bloom samples from Jiaozhou Bay. China. Harmful Algae, 96: 101821, https://doi.org/10.1016/j.hal.2020.101821.
Liu Y Y, Deng Y Y, Shang L X et al. 2021. Geographic distribution and historical presence of the resting cysts of Karenia mikimotoi in the seas of China. Harmful Algae, 109: 102121, https://doi.org/10.1016/j.hal.2021.102121.
Liu Y Y, Hu Z X, Deng Y Y et al. 2020a. Evidence for production of sexual resting cysts by the toxic dinoflagellate Karenia mikimotoi in clonal cultures and marine sediments.Journal of Phycology, 56(1): 121-134, https://doi.org/10.1111/jpy.12925.
Liu Y Y, Hu Z X, Deng Y Y et al. 2020b. Evidence for resting cyst production in the cosmopolitan toxic dinoflagellate Karlodinium veneficum and the cyst distribution in the China seas. Harmful Algae, 93: 101788, https://doi.org/10.1016/j.hal.2020.101788.
Lundholm N, Ribeiro S, Andersen T J et al. 2011. Buried alive-germination of up to a century-old marine protist resting stages. Phycologia, 50(6): 629-640, https://doi.org/10.2216/11-16.1.
Lundholm N, Ribeiro S, Godhe A et al. 2017. Exploring the impact of multidecadal environmental changes on the population genetic structure of a marine primary producer.Ecology and Evolution, 7(9): 3132-3142, https://doi.org/10.1002/ece3.2906.
Luo Z H, Hu Z X, Tang Y Z et al. 2018. Morphology, ultrastructure, and molecular phylogeny of Wangodinium sinense gen. et sp. nov. (Gymnodiniales, Dinophyceae) and revisiting of Gymnodinium dorsalisulcum and Gymnodinium impudicum. Journal of Phycology, 54(5):744-761, https://doi.org/10.1111/jpy.12780.
Luo Z H, Yang W D, Xu B et al. 2015. Morphology, ultrastructure, and phylogeny of Protodinium simplex and Biecheleriopsis cf. adriatica (Dinophyceae) from the China Sea. Nova Hedwigia, 101(1-2): 251-268, https://doi.org/10.1127/nova_hedwigia/2015/0268.
Mertens K N, Gu H F, Gurdebeke P R et al. 2020. A review of rare, poorly known, and morphologically problematic extant marine organic-walled dinoflagellate cyst taxa of the orders Gymnodiniales and Peridiniales from the northern Hemisphere. Marine Micropaleontology, 159: 101773, https://doi.org/10.1016/j.marmicro.2019.101773.
Moestrup Ø, Lindberg K, Daugbjerg N. 2009. Studies on woloszynskioid dinoflagellates V. ultrastructure of Biecheleriopsis gen. nov., with description of Biecheleriopsis adriatica sp. nov. Phycological Research, 57(3): 221-237, https://doi.org/10.1111/j.1440-1835.2009.00541.x.
Murray S A, Garby T, Hoppenrath M et al. 2012. Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata). PLoS One, 7(6): e38253, https://doi.org/10.1371/journal.pone.0038253.
Nishimura T, Sato S, Tawong W et al. 2013. Genetic diversity and distribution of the ciguatera-causing dinoflagellate Gambierdiscus spp. (Dinophyceae) in coastal areas of Japan. PLoS One, 8(4): e60882, https://doi.org/10.1371/journal.pone.0060882.
Ok J H, Jeong H J, Lee S Y et al. 2021. Shimiella gen. nov. and Shimiella gracilenta sp. nov. (Dinophyceae, Kareniaceae), a kleptoplastidic dinoflagellate from Korean waters and its survival under starvation. Journal of Phycology, 57(1):70-91, https://doi.org/10.1111/jpy.13067.
Posada D. 2008. jModelTest: phylogenetic model averaging.Molecular Biology and Evolution, 25(7): 1253-1256, https://doi.org/10.1093/molbev/msn083.
Price A M, Baustian M M, Turner R E et al. 2018. Dinoflagellate cysts track eutrophication in the northern Gulf of Mexico.Estuaries and Coasts, 41(5): 1322-1336, https://doi.org/10.1007/s12237-017-0351-x.
Ribeiro S, Berge T, Lundholm N et al. 2011. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nature Communications, 2: 311, https://doi.org/10.1038/ncomms1314.
Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics, 19(12): 1572-1574, https://doi.org/10. 1093/bioinformatics/btg180.
Scholin C A, Herzog M, Sogin M et al. 1994. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology, 30(6): 999-1011, https://doi.org/10.1111/j.0022-3646.1994.00999.x.
Shang L X, Hu Z X, Deng Y Y et al. 2019. Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks.Microorganisms, 7(8): 250, https://doi.org/10.3390/microorganisms7080250.
Siano R, Lassudrie M, Cuzin P et al. 2021. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Current Biology, 31(12): 2682-2689.e7, https://doi.org/10.1016/j.cub.2021.03.079.
Silvestro D, Michalak I. 2012. raxmlGUI: a graphical frontend for RAxML. Organisms Diversity & Evolution, 12(4):335-337, https://doi.org/10.1007/s13127-011-0056-0.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics, 30(9): 1312-1313, https://doi.org/10.1093/bioinformatics/btu033.
Steidinger K A, Meave del Castillo M E. 2018. Guide to the Identification of Harmful Microalgae in the Gulf of Mexico, Volume I: Taxonomy. Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, p384.
Takahashi K, Benico G, Lum W M et al. 2019. Gertia stigmatica gen. et sp. nov. (Kareniaceae, Dinophyceae), a new marine unarmored dinoflagellate possessing the peridinin-type chloroplast with an eyespot. Protist, 170(5):125680, https://doi.org/10.1016/j.protis.2019.125680.
Takahashi K, Moestrup Ø, Jordan R W et al. 2015. Two new freshwater woloszynskioids Asulcocephalium miricentonis gen. et sp. nov. and Leiocephalium pseudosanguineum gen. et sp. nov. (Suessiaceae, Dinophyceae) lacking an apical furrow apparatus.Protist, 166(6): 638-658, https://doi.org/10.1016/j.protis.2015.10.003.
Takahashi K, Moestrup Ø, Wada M et al. 2017. Dactylodinium pterobelotum gen. et sp. nov., a new marine woloszynskioid dinoflagellate positioned between the two families Borghiellaceae and Suessiaceae. Journal of Phycology, 53(6): 1223-1240, https://doi.org/10.1111/jpy.12575.
Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method.Proceedings of the National Academy of Sciences of the United States of America, 101(30): 11030-11035, https://doi.org/10.1073/pnas.0404206101.
Tang Y Z, Gu H F, Wang Z F et al. 2021. Exploration of resting cysts (stages) and their relevance for possibly HABscausing species in China. Harmful Algae, 107: 102050, https://doi.org/10.1016/j.hal.2021.102050.
Tang Y Z, Hu Z X, Deng Y Y. 2016. Characteristical life history (resting cyst) provides a mechanism for recurrence and geographic expansion of harmful algal blooms of dinoflagellates: a review. Studia Marina Sinica, 51: 132-154, https://doi.org/10.12036/hykxjk20160730001. (in Chinese with English abstract)
Van Nieuwenhove N, Head M J, Limoges A et al. 2020.An overview and brief description of common marine organic-walled dinoflagellate cyst taxa occurring in surface sediments of the northern Hemisphere.Marine Micropaleontology, 159: 101814, https://doi.org/10.1016/j.marmicro.2019.101814.
Wang Z H, Fu Y H, Kang W et al. 2013. Germination of phytoplankton resting cells from surface sediments in two areas of the Southern Chinese coastal waters.Marine Ecology, 34(2): 218-232, https://doi.org/10.1111/maec.12009.
White T J, Bruns T, Lee S et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J et al eds. PCR Protocols. Elsevier, Amsterdam. p.315-322, https://doi.org/10.1016/B978-0-12-372180-8.50042-1.
Copyright © Haiyang Xuebao