Cite this paper:
Zhaohui WANG, Chaofan WANG, Maoting WANG, Weiguo LI, Wencong ZHONG, Lei LIU, Tao JIANG. Diversity and community structure of eukaryotic microalgae in surface sediments in the central Bohai Sea, China, based on a metabarcoding approach[J]. Journal of Oceanology and Limnology, 2022, 40(6): 2277-2291

Diversity and community structure of eukaryotic microalgae in surface sediments in the central Bohai Sea, China, based on a metabarcoding approach

Zhaohui WANG1,2, Chaofan WANG1, Maoting WANG1, Weiguo LI1, Wencong ZHONG1, Lei LIU1, Tao JIANG3
1 College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
2 Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China;
3 School of Ocean, Yantai University, Yantai 264005, China
Abstract:
Sediment samples were collected at 17 stations in the central Bohai Sea, China, and the diversity and community structure of eukaryotic microalgae were assessed by metabarcoding the V4 region of 18S rDNA. A total of 930 operational taxonomic units (OTUs) were detected for microeukaryotes, including 98 algal OTUs. The algal communities comprised 42 genera belonging to 19 classes of six phyla, and they were dominated by chrysophytes and dinoflagellates. Dinoflagellates were also the most diverse microalgal group. The nano-sized dinoflagellates Biecheleria halophila and Azadinium trinitatum occurred abundantly in the study area; however, they have not been reported previously, as they may be overlooked or misidentified in light microscopy. Many pico-sized chlorophytes were detected in the sediment samples. Sixteen of the detected OTUs were assigned to potentially harmful and/or bloom-forming microalgae, suggesting some potential risks of harmful algal blooms in the central Bohai Sea. The capacity of metabarcoding to detect morphologically cryptic and small species makes this method a sufficiently sensitive means of detection for assessing eukaryotic microalgae in sediments.
Key words:    microalgae|dinoflagellate cysts|high throughput sequencing|marine sediment|the Bohai Sea|resting stages   
Received: 2021-01-03   Revised:
Tools
PDF (1184 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Zhaohui WANG
Articles by Chaofan WANG
Articles by Maoting WANG
Articles by Weiguo LI
Articles by Wencong ZHONG
Articles by Lei LIU
Articles by Tao JIANG
References:
Akselman R, Negri R M. 2012. Blooms of Azadinium cf.spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern Atlantic.Harmful Algae, 19: 30-38, https://doi.org/10.1016/j.hal.2012.05.004.
Álvarez G, Uribe E, Regueiro J, Blanco J, Fraga S. 2016.Gonyaulax taylorii, a new yessotoxins-producer dinoflagellate species from Chilean waters. Harmful Algae,58: 8-15, https://doi.org/10.1016/j.hal.2016.07.006.
Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25(4): 704-726, https://doi.org/10.1007/BF02804901.
Anderson D M, Rengefors K. 2006. Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: the importance of life cycle events.Limnology and Oceanography, 51(2): 860-873, https://doi.org/10.4319/lo.2006.51.2.0860.
Bailet B, Apothéloz-Perret-Gentil L, Baričević A, Chonova T, Franc A, Frigerio J M, Kelly M, Mora D, Pfannkuchen M, Proft S, Ramon M, Vasselon V, Zimmermann J, Kahlert M. 2020. Diatom DNA metabarcoding for ecological assessment: comparison among bioinformatics pipelines used in six European countries reveals the need for standardization. Science of the Total Environment, 745:140948, https://doi.org/10.1016/j.scitotenv.2020.140948.
Basti L, Nagai K, Go J, Okano S, Oda T, Tanaka Y, Nagai S. 2016. Lethal effects of ichthyotoxic raphidophytes, Chattonella marina, C. antiqua, and Heterosigma akashiwo, on post-embryonic stages of the Japanese pearl oyster, Pinctada fucata martensii. Harmful Algae, 59:112-122, https://doi.org/10.1016/j.hal.2016.08.003.
Bråte J, Logares R, Berney C, Ree D K, Klaveness D, Jakobsen K S, Shalchian-Tabrizi K. 2010. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA.The ISME Journal, 4(9): 1144-1153, https://doi.org/10. 1038/ismej.2010.39.
Brodie J, Chan C X, De Clerck O, Cock J M, Coelho S M, Gachon C, Grossman A R, Mock T, Raven J A, Smith A G, Yoon H S, Bhattacharya D. 2017. The algal revolution.Trends in Plant Science, 22(8): 726-738, https://doi.org/10.1016/j.tplants.2017.05.005.
Buchner D, Beermann A J, Laini A, Rolauffs P, Vitecek S, Hering D, Leese F. 2019. Analysis of 13, 312 benthic invertebrate samples from German streams reveals minor deviations in ecological status class between abundance and presence/absence data. PLoS One, 14(12): e0226547, https://doi.org/10.1371/journal.pone.0226547.
Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, Mcdonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335-336, https://doi.org/10.1038/nmeth.f.303.
Cavalier-Smith T, Lewis R, Chao E E, Oates B, Bass D. 2009.Helkesimastix marina n. sp. (Cercozoa: Sainouroidea superfam. n.) a gliding zooflagellate of novel ultrastructure and unusual ciliary behaviour. Protist, 160(3): 452-479, https://doi.org/10.1016/j.protis.2009.03.003.
Chariton A A, Stephenson S, Morgan M J, Steven A D L, Colloff M J, Court L N, Hardy C M. 2015. Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environmental Pollution, 203:165-174, https://doi.org/10.1016/j.envpol.2015.03.047.
Chen T T, Zhang Y X, Song S Q, Liu Y, Sun X X, Li C W. 2021. Diversity and seasonal variation of marine phytoplankton in Jiaozhou Bay, China revealed by morphological observation and metabarcoding. Journal of Oceanology and Limnology, published OnlineFirst, June 2021, https://doi.org/10.1007/s00343-021-0457-7.
Dai L, Yu R C, Geng H X, Zhao Y, Zhang Q C, Kong F Z, Chen Z F, Zhao J Y, Zhou M J. 2020. Resting cysts of Alexandrium catenella and A. pacificum (Dinophyceae) in the Bohai and Yellow Seas, China: abundance, distribution and implications for toxic algal blooms. Harmful Algae, 93: 101794, https://doi.org/10.1016/j.hal.2020.101794.
Decelle J, Probert I, Bittner L, Desdevises Y, Colin S, De Vargas C, Galí M, Simó R, Not F. 2012. An original mode of symbiosis in open ocean plankton. Proceedings of the National Academy of Sciences of the United States of America, 109(44): 18000-18005, https://doi.org/10.1073/pnas.1212303109.
Duan X Y, Li Y X. 2017. Distributions and sources of heavy metals in sediments of the Bohai Sea, China: a review.Environmental Science and Pollution Research, 24(32):24753-24764, https://doi.org/10.1007/s11356-017-0330-6.
Dzhembekova N, Moncheva S, Ivanova P, Slabakova N, Nagai S. 2018. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding. Biotechnology & Biotechnological Equipment, 32(6): 1507-1513, https://doi.org/10.1080/13 102818.2018.1532816.
Edgar R C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10):996-998, https://doi.org/10.1038/nmeth.2604.
Egge E S, Johannessen T V, Andersen T, Eikrem W, Bittner L, Larsen A, Sandaa R A, Edvardsen B. 2015. Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing.Molecular Ecology, 24(12): 3026-3042, https://doi.org/10.1111/mec.13160.
Ellegaard M, Moestrup Ø, Andersen T J, Lundholm N. 2016.Long-term survival of haptophyte and prasinophyte resting stages in marine sediment. European Journal of Phycology, 51(3): 328-337, https://doi.org/10.1080/0967 0262.2016.1161243.
Ellegaard M, Ribeiro S. 2018. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’.Biological Reviews, 93(1): 166-183, https://doi.org/10.1111/brv.12338.
Findenig B M, Chatzinotas A, Boenigk J. 2010. Taxonomic and ecological characterization of stomatocysts of Spumella-like flagellates (Chrysophyceae). Journal of Phycology, 46(5): 868-881, https://doi.org/10.1111/j. 1529-8817.2010.00892.x.
Fonseca V G, Carvalho G R, Nichols B, Quince C, Johnson H F, Neill S P, Lambshead J D, Thomas W K, Power D M, Creer S. 2014. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecology and Biogeography, 23(11):1293-1302, https://doi.org/10.1111/geb.12223.
Garcés-Pastor S, Wangensteen O S, Pérez-Haase A, Pèlachs A, Pérez-Obiol R, Cañellas-Boltà N, Mariani S, VegasVilarrúbia T. 2019. DNA metabarcoding reveals modern and past eukaryotic communities in a high-mountain peat bog system. Journal of Paleolimnology, 62(4): 425-441, https://doi.org/10.1007/s10933-019-00097-x.
Genovesi B, Laabir M, Masseret E, Collos Y, Vaquer A, Grzebyk D. 2009. Dormancy and germination features in resting cysts of Alexandrium tamarense species complex(Dinophyceae) can facilitate bloom formation in a shallow lagoon (Thau, southern France). Journal of Plankton Research, 31(10): 1209-1224, https://doi.org/10.1093/plankt/fbp066.
Gómez F, Richlen M L, Anderson D M. 2017. Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae). Harmful Algae, 63: 32-44, https://doi.org/10.1016/j.hal.2017.01.008.
Gran-Stadniczeñko S, Egge E, Hostyeva V, Logares R, Eikrem W, Edvardsen B. 2019. Protist diversity and seasonal dynamics in Skagerrak plankton communities as revealed by metabarcoding and microscopy. Journal of Eukaryotic Microbiology, 66(3): 494-513, https://doi.org/10.1111/jeu.12700.
Grattan L M, Holobaugh S, Morris J G Jr. 2016. Harmful algal blooms and public health. Harmful Algae, 57: 2-8, https://doi.org/10.1016/j.hal.2016.05.003.
Gu H F, Luo Z H, Krock B, Witt M, Tillmann U. 2013.Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea.Harmful Algae, 21-22: 64-75, https://doi.org/10.1016/j.hal.2012.11.009.
Guiry M D, Guiry G M. 2020. AlgaeBase. World-Wide Electronic Publication. National University of Ireland, Galway, http://www.algaebase.org. Accessed on 2020-08-09.
Guo S J, Li Y Q, Zhang C X, Zhai W D, Huang T, Wang L F, Ma W, Jin H L, Sun J. 2014. Phytoplankton community in the Bohai Sea and its relationship with environmental factors. Marine Science Bulletin, 33(1): 95-105. (in Chinese with English abstract)
Hallegraeff G M. 2003. Harmful algal blooms: a global overview. In: Hallegraeff G M, Anderson D M, Cembella A D eds. Manual on Harmful Marine Microalgae.UNESCO Publishing, Paris. p.25-49.
Head M J. 1996. Modern Dinofalgelate cysts and their biological affinities. In: Jansonius J, McGregory D C eds.Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Dallas. p.1197-1248.
Howard M D A, Smith G J, Kudela R M. 2009. Phylogenetic relationships of yessotoxin-producing dinoflagellates, based on the large subunit and internal transcribed spacer ribosomal DNA domains. Applied and Environmental Microbiology, 75(1): 54-63, https://doi.org/10.1128/AEM.00818-08.
Huang B Q, Liang Y L, Pan H Z, Xie L, Jiang T, Jiang T J. 2020. Hemolytic and cytotoxic activity from cultures of Aureococcus anophagefferens—a causative species of brown tides in the north-western Bohai Sea, China.Chemosphere, 247: 125819, https://doi.org/10.1016/j.chemosphere.2020.125819.
Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772-780, https://doi.org/10.1093/molbev/mst010.
Kremp A, Rengefors K, Montresor M. 2009. Species specific encystment patterns in three Baltic cold-water dinoflagellates: the role of multiple cues in resting cyst formation. Limnology and Oceanography, 54(4): 1125-1138, https://doi.org/10.4319/lo.2009.54.4.1125.
Lanzén A, Lekang K, Jonassen I, Thompson E M, Troedsson C. 2016. High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oildrilling activities. Molecular Ecology, 25(17): 4392-4406, https://doi.org/10.1111/mec.13761.
Lear G, Dickie I, Banks J, Boyer S, Buckley H L, Buckley T R, Cruickshank R, Dopheide A, Handley K M, Hermans S, Kamke J, Lee C K, Macdiarmid R, Morales S E, Orlovich D A, Smissen R, Wood J, Holdaway R. 2018. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. New Zealand Journal of Ecology, 42(1): 10, https://doi.org/10.20417/nzjecol.42.9.
Lekang K, Lanzén A, Jonassen I, Thompson E, Troedsson C. 2020. Evaluation of a eukaryote phylogenetic microarray for environmental monitoring of marine sediments.Marine Pollution Bulletin, 154: 111102, https://doi.org/10.1016/j.marpolbul.2020.111102.
Liang C Y. 2018. Distribution of Biogenic Elements and Germinated Phytoplankton Community Structure in the Surface Sediments from the Beibu Gulf Rim. Jinan University, Guangzhou. (in Chinese)
Lin S J. 2011. Genomic understanding of dinoflagellates.Research in Microbiology, 162(6): 551-569, https://doi.org/10.1016/j.resmic.2011.04.006.
Liu L, Wang Z H, Lu S H. 2020. Diversity and geographical distribution of resting stages of eukaryotic algae in the surface sediments from the southern Chinese coastline based on metabarcoding partial 18S rDNA sequences.Marine Ecology, 41(3): 1-17, https://doi.org/10.1111/maec.12585.
Liu Y, Song S Q, Chen T T, Li C W. 2017. The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing. Estuarine, Coastal and Shelf Science, 189: 143-155, https://doi.org/10.1016/j.ecss.2017.03.019.
Lundholm N, Churro C, Fraga S, Hoppenrath M, Iwataki M, Larsen J, Mertens K, Moestrup Ø, Zingone A. (Eds) 2009 onwards. IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae. Accessed at https://www.marinespecies.org/hab on 2022-02-08, https://doi.org/10.14284/362.
Luo Z H, Yang W D, Xu B, Gu H F. 2013. First record of Biecheleria cincta (Dinophyceae) from Chinese coasts, with morphological and molecular characterization of the strains. Chinese Journal of Oceanology and Limnology, 31(4): 835-845, https://doi.org/10.1007/s00343-013-2315-8.
Martinez E, Antoine D, D’Ortenzio F, Gentili B. 2009.Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science, 326(5957): 1253-1256, https://doi.org/10.1126/science.1177012.
McQuoid M R. 2002. Pelagic and benthic environmental controls on the spatial distribution of a viable diatom propagule bank on the Swedish west coast. Journal of Phycology, 38(5): 881-893, https://doi.org/10.1046/j. 1529-8817.2002.01169.x.
McQuoid M R, Hobson L A. 1996. Diatom resting stages.Journal of Phycology, 32(6): 889-902, https://doi.org/10.1111/j.0022-3646.1996.00889.x.
Montresor M, Di Prisco C, Sarno D, Margiotta F, Zingone A. 2013. Diversity and germination patterns of diatom resting stages at a coastal Mediterranean site. Marine Ecology Progress Series, 484: 79-95, https://doi.org/10.3354/meps10236.
Piredda R, Sarno D, Lange C B, Tomasino M P, Zingone A, Montresor M. 2017. Diatom resting stages in surface sediments: a pilot study comparing next generation sequencing and serial dilution cultures. Cryptogamie, Algologie, 38(1): 31-46, https://doi.org/10.7872/crya/v38.iss1.2017.31.
Pochon X, Wood S A, Keeley N B, Lejzerowicz F, Esling P, Drew J, Pawlowski J. 2015. Accurate assessment of the impact of salmon farming on benthic sediment enrichment using foraminiferal metabarcoding. Marine Pollution Bulletin, 100(1): 370-382, https://doi.org/10.1016/j.marpolbul.2015.08.022.
Price M N, Dehal P S, Arkin A P. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26(7):1641-1650, https://doi.org/10.1093/molbev/msp077.
Salonen I S, Chronopoulou P M, Leskinen E, Koho K A. 2019.Metabarcoding successfully tracks temporal changes in eukaryotic communities in coastal sediments. FEMS Microbiology Ecology, 95(1): fiy226, https://doi.org/10.1093/femsec/fiy226.
Shang L X, Hu Z X, Deng Y Y, Liu Y Y, Zhai X Y, Chai Z Y, Liu X H, Zhan Z F, Dobbs F C, Tang Y Z. 2019.Metagenomic sequencing identifies highly diverse assemblages of dinoflagellate cysts in sediments from ships’ ballast tanks. Microorganisms, 7(8): 250, https://doi.org/10.3390/microorganisms7080250.
Smayda T J. 2002. Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful Algae, 1(1): 95-112, https://doi.org/10.1016/S1568-9883(02)00010-0.
Song N Q, Wang N, Lu Y, Zhang J R. 2016. Temporal and spatial characteristics of harmful algal blooms in the Bohai Sea during 1952-2014. Continental Shelf Research, 122: 77-84, https://doi.org/10.1016/j.csr.2016.04.006.
Stoeck T, Kochems R, Forster D, Lejzerowicz F, Pawlowski J. 2018. Metabarcoding of benthic ciliate communities shows high potential for environmental monitoring in salmon aquaculture. Ecological Indicators, 85: 153-164, https://doi.org/10.1016/j.ecolind.2017.10.041.
Takahashi K, Sarai C, Iwataki M. 2014. Morphology of two marine woloszynskioid dinoflagellates, Biecheleria brevisulcata sp. nov. and Biecheleriopsis adriatica(Suessiaceae, Dinophyceae), from Japanese coasts.Phycologia, 53(1): 52-65, https://doi.org/10.2216/13-192.1.
Tang Y Z, Harke M J, Gobler C J. 2013. Morphology, phylogeny, dynamics, and ichthyotoxicity of Pheopolykrikos hartmannii (Dinophyceae) isolates and blooms from New York, USA. Journal of Phycology, 49(6): 1084-1094, https://doi.org/10.1111/jpy.12114.
Tillmann U, Borel C M, Barrera F, Lara R, Krock B, Almandoz G O, Witt M, Trefault N. 2016. Azadinium poporum from the Argentine Continental Shelf, Southwestern Atlantic, produces azaspiracid-2 and azaspiracid-2 phosphate.Harmful Algae, 51: 40-55, https://doi.org/10.1016/j.hal.2015.11.001.
Tillmann U, Gottschling M, Nézan E, Krock B, Bilien G. 2014. Morphological and molecular characterization of three new Azadinium species (Amphidomataceae, Dinophyceae) from the Irminger Sea. Protist, 165(4):417-444, https://doi.org/10.1016/j.protis.2014.04.004.
Tragin M, Vaulot D. 2018. Green microalgae in marine coastal waters: the Ocean Sampling Day (OSD) dataset. Scientific Reports, 8(1): 14020, https://doi.org/10.1038/s41598-018-32338-w.
Van Den Hoff J, Burton H R, Vesk M. 1989. An encystment stage, bearing a new scale type, of the Antarctic prasinophyte Pyramimonas gelidicola and its paleolimnological and taxonomic significance. Journal of Phycology, 25(3): 446-454, https://doi.org/10.1111/j. 1529-8817.1989.tb00249.x.
Vaulot D, Courties C, Partensky F. 1989. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry Part A, 10(5): 629-635, https://doi.org/10.1002/cyto.990100519.
Vogt M. 2015. Adrift in an ocean of change. Science, 350(6267): 1466-1468, https://doi.org/10.1126/science.aad6946.
Von Dassow P, Montresor M. 2011. Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. Journal of Plankton Research, 33(1):3-12, https://doi.org/10.1093/plankt/fbq137.
Wang S S, Liu D Y, Wang Y J, Yuan Z N. 2020. Temporal and spatial variations of benthic diatom communities at three estuaries in the Bohai Sea. Haiyang Xuebao, 42(8): 101-114. (in Chinese with English abstract)
Wang Y B, Sun Y Y, Wang C X, Chen W W, Hu X K. 2019.Net-phytoplankton community structure and its environmental correlations in central Bohai Sea and the Bohai Strait. Aquatic Ecosystem Health & Management, 22(4): 481-493, https://doi.org/10.1080/14634988.2019.1 693223.
Wei Q S, Wang B D, Yao Q Z, Xue L, Sun J C, Xin M, Yu Z G. 2019. Spatiotemporal variations in the summer hypoxia in the Bohai Sea (China) and controlling mechanisms.Marine Pollution Bulletin, 138: 125-134, https://doi.org/10.1016/j.marpolbul.2018.11.041.
Worden A Z, Follows M J, Giovannoni S J, Wilken S, Zimmerman A E, Keeling P J. 2015. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science, 347(6223): 1257594, https://doi.org/10.1126/science.1257594.
Wu W X, Huang B Q. 2019. Protist diversity and community assembly in surface sediments of the South China Sea.MicrobiologyOpen, 8(10): e891, https://doi.org/10.1002/mbo3.891.
Xu X, Yu Z M, Cheng F J, He L Y, Cao X H, Song X X. 2017.Molecular diversity and ecological characteristics of the eukaryotic phytoplankton community in the coastal waters of the Bohai Sea, China. Harmful Algae, 61: 13-22, https://doi.org/10.1016/j.hal.2016.11.005.
Yang S, Cui Z G, Zhang Y, Jiang T, Yang Q, Sun Y. 2019.Photosynthetic pigments in surface sediments in the northwest of the Bohai Sea, China: potential implications for sediment deposition of brown tides of Aureococcus anophagefferens in coastal waters. Ecological Indicators, 102: 145-153, https://doi.org/10.1016/j.ecolind.2019.02. 037.
Yu G C, Smith D K, Zhu H C, Guan Y, Lam T T Y. 2017.GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1):28-36, https://doi.org/10.1111/2041-210X.12628.
Zhu A M, Liu J H, Qiao S Q, Zhang H. 2020. Distribution and assessment of heavy metals in surface sediments from the Bohai Sea of China. Marine Pollution Bulletin, 153:110901, https://doi.org/10.1016/j.marpolbul.2020.110901.
Copyright © Haiyang Xuebao