Cite this paper:
Lei ZHOU, Shihui HUANG, Qing WANG, Zhenhai LI, Zongyang LI, Anyou HE, Jiehu CHEN, Li LIU, Keshu ZOU. Novel evolutionary insights into nemacheilid cavefish: evidence from comparative analysis of mitochondrial genomes[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1640-1653

Novel evolutionary insights into nemacheilid cavefish: evidence from comparative analysis of mitochondrial genomes

Lei ZHOU1, Shihui HUANG1, Qing WANG1, Zhenhai LI1, Zongyang LI1, Anyou HE2, Jiehu CHEN3, Li LIU1, Keshu ZOU1
1 Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
2 Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
3 Science Corporation of Gene, Guangzhou 510000, China
Abstract:
Cavefish can be important models for understanding the relationships among evolution, adaptation, and development in extreme environments. However, cavefish remain poorly studied, particularly at the genome level. Here, we sequenced the complete mitogenome of three cavefish in the family Nemacheilidae (Paranemachilus pingguoensis, Oreonectes polystigmus, and Heminoemacheilus longibarbatus), which were collected from karst caves in South China. The mitogenomes each contained 37 genes (13 protein coding, 22 tRNA, and two rRNA genes) and a single control region, with the same genetic arrangement and distribution as those found in vertebrates. The non-synonymous/synonymous mutation ratios (Ka/Ks) of the mitogenomes indicated that the protein-coding genes (PCGs) of the three cavefish evolved under purifying selection. The mitogenomes of the three cavefish exhibit nucleotide composition biases for PCGs, tRNAs, rRNAs, and the whole genome, indicating that the mitochondrial DNA might have been subjected to evolutionary selection in response to extreme cave environments. Divergence time and evolutionary history analyses suggested that the speciation and diversification of the cavefish coincided with the Miocene uplift of the southern Qinghai-Tibet Plateau, which greatly changed cave habitats. Overall, our study sheds light on the mitogenomes, phylogeny, and evolutionary history of nemacheilid cavefish.
Key words:    cavefish|mitochondrial genome|evolution|Nemacheilidae   
Received: 2021-02-24   Revised:
Tools
PDF (1423 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Lei ZHOU
Articles by Shihui HUANG
Articles by Qing WANG
Articles by Zhenhai LI
Articles by Zongyang LI
Articles by Anyou HE
Articles by Jiehu CHEN
Articles by Li LIU
Articles by Keshu ZOU
References:
An Z S, Kutzbach J E, Prell W L, Porter S C.2001.Evolution of Asian monsoons and phased uplift of the HimalayaTibetan plateau since Late Miocene times.Nature, 411(6833):62-66, https://doi.org/10.1038/35075035.
Avise J C, Neigel J E, Arnold J.1984.Demographic influences on mitochondrial DNA lineage survivorship in animal populations.Journal of Molecular Evolution, 20(2):99-105, https://doi.org/10.1007/BF02257369.
Boore J L.1999.Animal mitochondrial genomes.Nucleic Acids Research, 27(8):1767-1780, https://doi.org/10.1093/nar/27.8.1767.
Broughton R E, Milam J E, Roe B A.2001.The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA.Genome Research, 11(11):1958-1967, https://doi.org/10.1101/gr.156801.
Chao Q J, Li Y D, Geng X X, Zhang L, Dai X, Zhang X, Li J, Zhang H J.2014.Complete mitochondrial genome sequence of Marmota himalayana (Rodentia:Sciuridae) and phylogenetic analysis within Rodentia.Genetics and Molecular Research, 13(2):2739-2751, https://doi.org/10.4238/2014.April.14.3.
Charif D, Lobry J R.2007.SeqinR 1.0-2:a contributed package to the r project for statistical computing devoted to biological sequences retrieval and analysis.In:Bastolla U, Porto M, Roman H E, Vendruscolo M eds.Structural Approaches to Sequence Evolution:Molecules, Networks, Populations.Springer, Berlin, Heidelberg.p.207-232, https://doi.org/10.1007/978-3-540-35306-5_10.
Cheng J, Ma G Q, Song N, Gao T X.2012.Complete mitochondrial genome sequence of bighead croaker Collichthys niveatus (Perciformes, Sciaenidae):a mitogenomic perspective on the phylogenetic relationships of Pseudosciaeniae.Gene, 491(2):210-223, https://doi.org/10.1016/j.gene.2011.09.020.
Deharveng L, Stoch F, Gibert J, Bedos A, Galassi D, Zagmajster M, Brancelj A, Camacho A, Fiers F, Martin P, Giani N, Magniez G, Marmonier P.2009.Groundwater biodiversity in Europe.Freshwater Biology, 54(4):709-726, https://doi.org/10.1111/j.1365-2427.2008.01972.x.
Dierckxsens N, Mardulyn P, Smits G.2017.NOVOPlasty:de novo assembly of organelle genomes from whole genome data.Nucleic Acids Research, 45(4):e18, https://doi.org/10.1093/nar/gkw955.
Du L N, Yang J, Min R, Chen X Y, Yang J X.2021.A review of the Cypriniform tribe Yunnanilini Prokofiev, 2010 from China, with an emphasis on five genera based on morphologies and complete mitochondrial genomes of some species.Zoological Research, 42(3):310-334, https://doi.org/10.24272/j.issn.2095-8137.2020.229.
Edgar R C.2004.MUSCLE:multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Research, 32(5):1792-1797, https://doi.org/10.1093/nar/gkh340.
Huang J Q, Yang J, Wu Z Q, Zhao Y H.2020.Oreonectes guilinensis (Teleostei, Cypriniformes, Nemacheilidae), a new loach species from Guangxi, China.Journal of Fish Biology, 96(1):111-119, https://doi.org/10.1111/jfb.14191.
Huang Q H, Cai Y L, Xing X S.2008.Rocky desertification, antidesertification, and sustainable development in the karst mountain region of Southwest China.AMBIO:A Journal of the Human Environment, 37(5):390-392, https://doi.org/10.1579/08-S-493.1.
Huang W, Shi G F, He A Y, Wen Y H, Huang J, Luo F G.2019.Characterization of complete mitochondrial genome of Yunnanilus jinxiensis (Cypriniformes, Balitoridae, Nemacheilidae).Mitochondrial DNA Part B, 4(1):185-186, https://doi.org/10.1080/23802359.2018.1545543.
Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh T P, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M.2013.MitoFish and MitoAnnotator:a mitochondrial genome database of fish with an accurate and automatic annotation pipeline.Molecular Biology and Evolution, 30(11):2531-2540, https://doi.org/10.1093/molbev/mst141.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K.2018.MEGA X:molecular evolutionary genetics analysis across computing platforms.Molecular Biology and Evolution, 35(6):1547-1549, https://doi.org/10.1093/molbev/msy096.
Kumar S, Stecher G, Suleski M, Hedges S B.2017.TimeTree:a resource for timelines, timetrees, and divergence times.Molecular Biology and Evolution, 34(7):1812-1819, https://doi.org/10.1093/molbev/msx116.
Kundu S, Kumar V, Tyagi K, Chakraborty R, Singha D, Rahaman I, Pakrashi A, Chandra K.2018.Complete mitochondrial genome of Black Soft-shell Turtle(Nilssonia nigricans) and comparative analysis with other Trionychidae.Scientific Reports, 8(1):17378, https://doi.org/10.1038/s41598-018-35822-5.
Lan J H, Gan X, Wu T J, Yang J.2013.Cave Fishes of Guangxi, China.Science Press, Beijing.(in Chinese)
Li D W.2010.Temporal-spatial structure of intraplate uplift in the Qinghai-Tibet Plateau.Acta Geologica Sinica (English Edition), 84(1):105-134, https://doi.org/10.1111/j.1755-6724.2010.00174.x.
Liu Q N, Xin Z Z, Zhu X Y, Chai X Y, Zhao X M, Zhou C L, Tang B P.2017.A transfer RNA gene rearrangement in the lepidopteran mitochondrial genome.Biochemical and Biophysical Research Communications, 489(2):149-154, https://doi.org/10.1016/j.bbrc.2017.05.115.
Lü Z M, Zhu K H, Jiang H, Lu X T, Liu B J, Ye Y Y, Jiang L H, Liu L Q, Gong L.2019.Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes.International Journal of Biological Macromolecules, 135:609-618, https://doi.org/10.1016/j.ijbiomac.2019.05.139.
Luo F G, Huang J, Liu J L, Situ L, Liu X, Wen Y H.2017.Characterization of complete mitochondrial genome of Oreonectes furcocaudalis (Cypriniformes, Balitoridae, Nemacheilidae).Mitochondrial DNA Part B, 2(1):69-70, https://doi.org/10.1080/23802359.2017.1280697.
Luo Z H, Tang S H, Jiang Z G, Chen J, Fang H X, Li C W.2016.Conservation of terrestrial vertebrates in a global hotspot of karst area in southwestern China.Scientific Reports, 6(1):25717, https://doi.org/10.1038/srep25717.
Lynch M, Koskella B, Schaack S.2006.Mutation pressure and the evolution of organelle genomic architecture.Science, 311(5768):1727-1730, https://doi.org/10.1126/science.1118884.
Ma L, Zhao Y H, Yang J X.2019.Cavefish of China.In:White W B, Culver D C, Pipan T eds.Encyclopedia of Caves.3rd edn.Elsevier, Amsterdam.p.237-254, https://doi.org/10.1016/B978-0-12-814124-3.00027-3.
Miya M, Takeshima H, Endo H, Ishiguro N B, Inoue J G, Mukai T, Satoh T P, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai S M, Nishida M.2003.Major patterns of higher teleostean phylogenies:a new perspective based on 100 complete mitochondrial DNA sequences.Molecular Phylogenetics and Evolution, 26(1):121-138, https://doi.org/10.1016/S1055-7903(02)00332-9.
Niemiller M L, Bichuette M E, Chakrabarty P, Fenolio D B, Gluesenkamp A G, Soares D, Zhao Y H.2019.Cavefishes.In:White W B, Culver D C, Pipan T eds.Encyclopedia of Caves.3rd edn.Elsevier, Amsterdam.p.227-236, https://doi.org/10.1016/B978-0-12-814124-3.00026-1.
Palandačić A, Bonacci O, Snoj A.2012.Molecular data as a possible tool for tracing groundwater flow in karst environment:example of Delminichthys adspersus in Dinaric karst system.Ecohydrology, 5(6):791-797, https://doi.org/10.1002/eco.269.
Perna N T, Kocher T D.1995.Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes.Journal of Molecular Evolution, 41(3):353-358, https://doi.org/10.1007/BF01215182.
Posada D.2008.jModelTest:phylogenetic model averaging.Molecular Biology and Evolution, 25(7):1253-1256, https://doi.org/10.1093/molbev/msn083.
Protas M E, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery W R, Zon L I, Borowsky R, Tabin C J.2006.Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism.Nature Genetics, 38(1):107-111, https://doi.org/10.1038/ng1700.
Riddle M R, Aspiras A C, Gaudenz K, Peuß R, Sung J Y, Martineau B, Peavey M, Box A C, Tabin J A, McGaugh S, Borowsky R, Tabin C J, Rohner N.2018.Insulin resistance in cavefish as an adaptation to a nutrient-limited environment.Nature, 555(7698):647-651, https://doi.org/10.1038/nature26136.
Ronquist F, Teslenko M, Van Der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P.2012.MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space.Systematic Biology, 61(3):539-542, https://doi.org/10.1093/sysbio/sys029.
Satoh T P, Miya M, Mabuchi K, Nishida M.2016.Structure and variation of the mitochondrial genome of fishes.BMC Genomics, 17(1):719, https://doi.org/10.1186/s12864-016-3054-y.
Sharp P M, Li W H.1987.The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications.Nucleic Acids Research, 15(3):1281-1295, https://doi.org/10.1093/nar/15.3.1281.
Shi X F, Tian P, Lin R C, Huang D Y, Wang J J.2016.Characterization of the complete mitochondrial genome sequence of the globose head whiptail Cetonurus globiceps (Gadiformes:Macrouridae) and its phylogenetic analysis.PLoS One, 11(4):e0153666, https://doi.org/10.1371/journal.pone.0153666.
Shi Y F, Li J J, Li B Y, Yao T D, Wang S M, Li S J, Cui Z J, Wang F B, Pan B T, Fang X M, Zhang Q S.1999.Uplift of the Qinghai-Xizang (Tibetan) plateau and East Asia environmental change during late Cenozoic.Acta Geographica Sinica, 54(1):10-21, https://doi.org/10.3321/j.issn:0375-5444.1999.01.002.(in Chinese with English abstract)
Shu S S, Jiang W S, Whitten T, Yang J X, Chen X Y.2013.Drought and China's cave species.Science, 340(6130):272, https://doi.org/10.1126/science.340.6130.272-a.
Stamatakis A.2014.RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics, 30(9):1312-1313, https://doi.org/10.1093/bioinformatics/btu033.
Tomasco I H, Lessa E P.2011.The evolution of mitochondrial genomes in subterranean caviomorph rodents:adaptation against a background of purifying selection.Molecular Phylogenetics and Evolution, 61(1):64-70, https://doi.org/10.1016/j.ympev.2011.06.014.
Trontelj P.2019.Adaptation and natural selection in caves.In:White W B, Culver D C, Pipan T eds.Encyclopedia of Caves.3rd edn.Elsevier, Amsterdam.p.40-46, https://doi.org/10.1016/B978-0-12-814124-3.00006-6.
Wei L, He J, Jia X, Qi Q, Liang Z S, Zheng H, Ping Y, Liu S Y, Sun J C.2014.Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution.BMC Evolutionary Biology, 14(1):262, https://doi.org/10.1186/s12862-014-0262-4.
Wei S J, Shi M, Chen X X, Sharkey M J, van Achterberg C, Ye G Y, He J H.2010a.New views on strand asymmetry in insect mitochondrial genomes.PLoS One, 5(9):e12708, https://doi.org/10.1371/journal.pone.0012708.
Wei S J, Shi M, Sharkey M J, van Achterberg C, Chen X X.2010b.Comparative mitogenomics of Braconidae(Insecta:Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects.BMC Genomics, 11(1):371, https://doi.org/10.1186/1471-2164-11-371.
Wilkens H, Strecker U.2003.Convergent evolution of the cavefish Astyanax (Characidae, Teleostei):genetic evidence from reduced eye-size and pigmentation.Biological Journal of the Linnean Society, 80(4):545-554, https://doi.org/10.1111/j.1095-8312.2003.00230.x.
Xiao H, Chen S Y, Liu Z M, Zhang R D, Li W X, Zan R G, Zhang Y P.2005.Molecular phylogeny of Sinocyclocheilus(Cypriniformes:Cyprinidae) inferred from mitochondrial DNA sequences.Molecular Phylogenetics and Evolution, 36(1):67-77, https://doi.org/10.1016/j.ympev.2004.12.007.
Xu S Q, Luosang J B, Hua S, He J, Ciren A, Wang W, Tong X M, Liang Y, Wang J, Zheng X G.2007.High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome.Journal of Genetics and Genomics, 34(8):720-729, https://doi.org/10.1016/S1673-8527(07)60081-2.
Yang J X, Chen X L, Bai J, Fang D M, Qiu Y, Jiang W S, Yuan H, Bian C, Lu J, He S Y, Pan X F, Zhang Y L, Wang X A, You X X, Wang Y S, Sun Y, Mao D Q, Liu Y, Fan G Y, Zhang H, Chen X Y, Zhang X H, Zheng L P, Wang J T, Cheng L, Chen J M, Ruan Z Q, Li J, Yu H, Peng C, Ma X Y, Xu J M, He Y, Xu Z F, Xu P, Wang J, Yang H M, Wang J, Whitten T, Xu X, Shi Q.2016.The Sinocyclocheilus cavefish genome provides insights into cave adaptation.BMC Biology, 14(1):1, https://doi.org/10.1186/s12915-015-0223-4.
Yang Z H, Bielawski J P.2000.Statistical methods for detecting molecular adaptation.Trends in Ecology & Evolution, 15(12):496-503, https://doi.org/10.1016/S0169-5347(00)01994-7.
Zhao Y H, Gozlan R E, Zhang C G.2011.Out of sight out of mind:current knowledge of Chinese cave fishes.Journal of Fish Biology, 79(6):1545-1562, https://doi.org/10.1111/j.1095-8649.2011.03066.x.
Zhao Y H, Zhang C G.2009.Endemic Fishes of Sinocyclocheilus (Cypriniformes:Cyprinidae) in China-Species Diversity, Cave Adaptation, Systematics and Zoogeography.Science Press, Beijing, China.(in Chinese)
Copyright © Haiyang Xuebao