Cite this paper:
Xingyu LIU, Xiaolu HAN, Zhiqiang HAN. Effects of climate change on the potential habitat distribution of swimming crab Portunus trituberculatus under the species distribution model[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1556-1565

Effects of climate change on the potential habitat distribution of swimming crab Portunus trituberculatus under the species distribution model

Xingyu LIU, Xiaolu HAN, Zhiqiang HAN
Fishery College, Zhejiang Ocean University, Zhoushan 316002, China
Abstract:
Over the last decades, the species distribution model (SDM) has become an essential tool for studying the potential effects of climate change on species distribution. In this study, an ensemble SDM was developed to predict the changes in species distribution of swimming crab Portunus trituberculatus across different seasons in the future (2050s and 2100s) under the climate scenarios of Representative Concentration Pathway (RCP)4.5 and RCP8.5. Results of the ensemble SDM indicate that the distribution of this species will move northward and exhibit evident seasonal variations. Among the four seasons, the suitable habitat for this species will be significantly reduced in summer, with loss rates ranging from 45.23% (RCP4.5) to 88.26% (RCP.8.5) by the 2100s. The loss of habitat will mostly occur in the East China Sea and the southern part of the Yellow Sea, while a slight increase in habitat will occur in the northern part of the Bohai Sea. These findings provide an information forecast for this species in the future. Such forecast will be helpful in improving fishery management under climate change.
Key words:    Portunus trituberculatus|climate change|species distribution model|suitable habitat   
Received: 2021-03-26   Revised:
Tools
PDF (1325 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Xingyu LIU
Articles by Xiaolu HAN
Articles by Zhiqiang HAN
References:
Aguirre-Gutiérrez J, Carvalheiro L G, Polce C, van Loon E E, Raes N, Reemer M, Biesmeijer J C.2013.Fit-for-Purpose:species distribution model performance depends on evaluation criteria-Dutch hoverflies as a case study.PLoS One, 8(5):e63708.
Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão E A, De Clerck O.2018.Bio-ORACLE v2.0:extending marine data layers for bioclimatic modelling.Global Ecology and Biogeography, 27(3):277-284, https://doi.org/10.1111/geb.12693.
Basher Z, Bowden D A, Costello M J.2014.Global marine environment datasets (GMED).Version 1.0 (Rev.01.2014).http://gmed.auckland.ac.nz.Accessed on 2018-10-30.
Becker E A, Carretta J V, Forney K A, Barlow J, Brodie S, Hoopes R, Jacox M G, Maxwell S M, Redfern J V, Sisson N B, Welch H, Hazen E L.2020.Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees.Ecology and Evolution, 10(12):5759-5784, https://doi.org/10.1002/ece3.6316.
Belanger C L, Jablonski D, Roy K, Berke S K, Krug A Z, Valentine J W.2012.Global environmental predictors of benthic marine biogeographic structure.Proceedings of the National Academy of Sciences of the United States of America, 109(35):14046-14051, https://doi.org/10.1073/pnas.1212381109.
Bosch S, Tyberghein L, Deneudt K, Hernandez F, De Clerck O.2018.In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset.Diversity and Distributions, 24(2):144-157, https://doi.org/10.1111/ddi.12668.
Cheung W W L, Lam V W Y, Sarmiento J L, Kearney K, Watson R, Zeller D, Pauly D.2010.Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change.Global Change Biology, 16(1):24-35, https://doi.org/10.1111/j.1365-2486.2009.01995.x.
Dahlke F T, Wohlrab S, Butzin M, Pörtner H O.2020.Thermal bottlenecks in the life cycle define climate vulnerability of fish.Science, 369(6499):65-70, https://doi.org/10.1126/science.aaz3658.
Dai A Y, Feng Z G, Song Y Z, Huang Z X, Wu H C.1977.Preliminary investigation of fishery biology of Portunus trituberculatus.Journal of Zoology, 12(2):30-33, https://doi.org/10.13859/j.cjz.1977.02.015.(in Chinese)
Dai C, Wang F, Fang Z H, Dong S L.2014.Effects of temperature on the respiratory metabolism and activities of related enzymes of swimming crab Portunus trituberculatusenzyme activity in Portunus trituberculatus.Progress in Fishery Sciences, 235(2):90-96.(in Chinese with English abstract)
Doney S C, Ruckelshaus M, Duffy J E, Barry J P, Chan F, English C A, Galindo H M, Grebmeier J M, Hollowed A B, Knowlton N, Polovina J, Rabalais N N, Sydeman W J, Talley L D.2012.Climate change impacts on marine ecosystems.Annual Review of Marine Science, 4:11-37, https://doi.org/10.1146/annurev-marine-041911-111611.
Fu S L, Ding M M, Liang Q J, Yang Y J, Chen M, Wei X F, Wang A L, Liao S A, Ye J M.2019.The key differentially expressed genes and proteins related to immune response in the spleen of pufferfish (Takifugu obscurus) infected by Aeromonas hydrophila.Fish & Shellfish Immunology, 91:1-11, https://doi.org/10.1016/j.fsi.2019.05.016.
Goldsmit J, Archambault P, Chust G, Villarino E, Liu G, Lukovich J V, Barber D V, Howland K L.2018.Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic.Biological Invasions, 20(2):501-517, https://doi.org/10.1007/s10530-017-1553-7.
Hu Z H, Xu J Z, Shi J G.2011.Farming modes of swimming crab (Portunus trituberculatus) along the coast of Zhejiang Province.Modern Fisheries Information, 26(3):3-5.(in Chinese)
Jin X S, Cheng J S, Qiu S Y, Li P J, Cui Y, Dong J.2006.Integrated Research and Evaluation on Fisheries Resources in Yellow Sea and Bohai Sea.Ocean Press, Beijing, China.p.350-357.(in Chinese)
Li Z L, Jin X S, Zhang B, Zhou Z P, Shan X J, Dai F Q.2012.Interannual variations in the population characteristics of the Pacific cod Gadus macrocephalus in the Yellow Sea.Oceanologia et Limnologia Sinica, 43(5):924-931.(in Chinese)
Liao Y Y, Xiao Z P, Yuan Y Y.2008.Temperature tolerance of larva and juvenile of Portunus trituberculatus.Acta Hydrobiologica Sinica, 32(4):534-543, https://doi.org/10.3321/j.issn:1000-3207.2008.04.014.(in Chinese with English abstract)
Lobo J M, Jiménez-Valverde A, Real R.2008.AUC:a misleading measure of the performance of predictive distribution models.Global Ecology and Biogeography, 17(2):145-151, https://doi.org/10.1111/j.1466-8238.2007.00358.x.
Lu S K, Li R H, Zheng W B, Chen L, Ren Z M, Mu C K, Song W W, Wang C L.2019.Long-term low-salinity stress affects growth, survival and osmotic related gammaaminobutyric acid regulation in the swimming crab Portunus trituberculatus.Aquaculture Research, 50(10):2888-2895, https://doi.org/10.1111/are.14242.
Merino G, Barange M, Blanchard J L, Harle J, Holmes R, Allen I, Allison E H, Badjeck M C, Dulvy N K, Holt J, Jennings S, Mullon C, Rodwell L D.2012.Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22(4):795-806, https://doi.org/10.1016/j.gloenvcha.2012.03.003.
Morley J J, Heusser L E.1997.Role of orbital forcing in East Asian monsoon climates during the last 350 kyr:evidence from terrestrial and marine climate proxies from core RC14-99.Geochemistry, Geophysics, Geosystems, 12(3):483-493, https://doi.org/10.1029/97PA00213.
Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, van Vuuren D P, Carter T R, Emori S, Kainuma M, Kram T, Meehl G A, Mitchell J F B, Nakicenovic N, Riahi K, Smith S J, Stouffer R J, Thomson A M, Weyant J P,Wilbanks T J.2010.The next generation of scenarios for climate change research and assessment.Nature, 463(7282):747-756.
Poloczanska E S, Burrows M T, Brown C J, García Molinos J, Halpern B S, Hoegh-Guldberg O, Kappel C V, Moore P J, Richardson A J, Schoeman D S, Sydeman W J.2016.
Responses of marine organisms to climate change across oceans.Frontiers in Marine Science, 3:62, https://doi.org/10.3389/fmars.2016.00062.
Ren X Y, Yu X, Gao B Q, Li J, Liu P.2017.iTRAQ-based identification of differentially expressed proteins related to growth in the swimming crab, Portunus trituberculatus.Aquaculture Research, 48(6):3257-3267, https://doi.org/10.1111/are.13155.
Rilov G.2016.Multi-species collapses at the warm edge of a warming sea.Scientific Reports, 6:36897, https://doi.org/10.1038/srep36897.
Silva C, Leiva F, Lastra J.2019.Predicting the current and future suitable habitat distributions of the anchovy(Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile.Fisheries Oceanography, 28(2):171-182, https://doi.org/10.1111/fog.12400.
Su X P, Liu J J, Wang F, Wang Q H, Zhang D, Zhu B S, Liu D P.2020.Effect of temperature on agonistic behavior and energy metabolism of the swimming crab (Portunus trituberculatus).Aquaculture, 516:734573, https://doi.org/10.1016/j.aquaculture.2019.734573.
Swets J A.1988.Measuring the accuracy of diagnostic systems.Science, 240(4857):1285-1293.
Thuiller W, Georges D, Engler R.2014.Biomod2:ensemble platform for species distribution modelling.R package version 3.3-7.1.
Thuiller W.2003.BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change.Global Change Biology, 9(10):1353-1362, https://doi.org/10.1046/j.1365-2486.2003.00666.x.
Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O.2012.Bio-ORACLE:a global environmental dataset for marine species distribution modelling.Global Ecology and Biogeography, 21(2):272-281, https://doi.org/10.1111/j.1466-8238.2011.00656.x.
Xue J L, Fan W, Tang F H, Guo G G, Tang W, Zhang S M.2018.Analysis of potential habitat distribution of Scomber japonicus in northwest Pacific Ocean using maximum entropy model.South China Fisheries Science, 14(1):92-98, https://doi.org/10.3969/j.issn.2095-0780.2018.01.012.(in Chinese with English abstract)
Yáñez E, Hormazábal S, Silva C, Montecinos A, Barbieri M A, Valdenegro A, Órdenes A, Gómez F.2008.Coupling between the environment and the pelagic resources exploited off Northern Chile:ecosystem indicators and a conceptual model.Latin American Journal of Aquatic Research, 36(2):159-181, https://doi.org/10.3856/vol36-issue2-fulltext-3.
Zhang C C, Wei H, Song G S, Xie C.2020.IPCC-CMIP5 Based projection and analysis of future sea surface temperature changes in coastal Seas East of China.Oceanologia et Limnologia Sinica, 51(6):1288-1300.(in Chinese with English abstract)
Zhang L, Liu S, Sun P S, Wang T L.2011.Segmentation and mapping of uncertain components in the simulation of the impact of climate change on species distribution:a case study of Pinus tabulaeformis.Acta Ecologica Sinica, 19:5749-5761.(in Chinese)
Zhang Z X, Xu S Y, Capinha C, Weterings R, Gao T X.2019.Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica.Ecological Indicators, 104:333-340, https://doi.org/10.1016/j.ecolind.2019.05.023.
Zhao Z F, Wei H Y, Guo Y L, Gu W.2016.Potential distribution of Panax ginseng and its predicted responses to climate change.Chinese Journal of Applied Ecology, 27(11):3607-3615.(in Chinese with English abstract)
Zhu N.2019.Simulation of suitable habitat distribution of Magnolia officinalis based on Ensemble Model.Journal of Sichuan Agricultural University, 37(04):481-489.
Copyright © Haiyang Xuebao