Cite this paper:
Bing HAN. The energy conversion rates from eddies and mean flow into internal lee waves in the global ocean[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1304-1313

The energy conversion rates from eddies and mean flow into internal lee waves in the global ocean

Bing HAN1,2,3,4
1 Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China;
2 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3 Institut für Meereskunde, Universität Hamburg, Hamburg 20146, Germany;
4 Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China
Internal lee waves play an important role in transferring energy from eddies to small scale mixing. However, the energy conversion from eddies into lee waves in the global ocean remains poorly understood. Conversion rates from eddies and from mean flow in the global ocean were differentiated using single beam sounding data, stratification from climatology, eddy velocity, and mean flow from a global ocean model. The global integral energy conversion from eddies is estimated to be 0.083 TW and is almost twice as that from the mean flow. A new method was developed to study the uncertainties of energy conversion caused by dealing with the topographic data. Results show that different data processing procedures, and the resolution and accuracy of topographic data have a significant impact on the estimated global energy conversion.
Key words:    internal lee waves|eddies|mean flow|energy conversion|topography   
Received: 2021-03-15   Revised:
PDF (8777 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Bing HAN
Alford M H.2003.Improved global maps and 54-year history of wind-work on ocean inertial motions.Geophysical Research Letters, 30(8):1424,
Arbic B K, Shriver J F, Hogan P J, Hurlburt H E, Mcclean J L, Metzger E J, Scott R B, Sen A, Smedstad O M, Wallcraft A J.2009.Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models.Journal of Geophysical Research:Oceans, 114(C2):C02024,
Bell T H.1975.Lee waves in stratified flows with simple harmonic time dependence.Journal of Fluid Mechanics, 67(4):705-722,
Brearley J A, Sheen K L, Garabato A C N, Smeed D A, Waterman S.2013.Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean.Journal of Physical Oceanography, 43(11):2288-2308,
Cusack J M, Garabato A C N, Smeed D A, Girton J B.2017.Observation of a large lee wave in the Drake Passage.Journal of Physical Oceanography, 47(4):793-810,
Eden C, Olbers D.2014.An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves.Journal of Physical Oceanography, 44(8):2093-2106,
Egbert G D, Ray R D.2001.Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data.Journal of Geophysical Research:Oceans, 106(C10):22475-22502,
Ferrari R, Wunsch C.2009.Ocean circulation kinetic energy:reservoirs, sources, and sinks.Annual Review of Fluid Mechanics, 41:253-282,
Garabato A C N, Polzin K L, King B A, Heywood K J, Visbeck M.2004.Widespread intense turbulent mixing in the Southern Ocean.Science, 303(5655):210-213,
Goff J A, Arbic B K.2010.Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness.Ocean Modelling, 32(1-2):36-43,
Goff J A, Jordan T H.1988.Stochastic modeling of seafloor morphology:inversion of sea beam data for second-order statistics.Journal of Geophysical Research:Solid Earth, 93(B11):13589-13608,
Gouretski V V, Koltermann K P.2004.WOCE Global Hydrographic Climatology.Berichte des BSH, Nr.35.
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D.1996.The NCEP/NCAR 40-year reanalysis project.Bulletin of the American Meteorological Society, 77(3):437-472,<0437:TNYRP>2.0.CO;2.
Liu Y Z, Jing Z, Wu L X.2019.Wind power on oceanic nearinertial oscillations in the Global Ocean estimated from surface drifters.Geophysical Research Letters, 46(5):2647-2653,
Melet A, Hallberg R, Legg S, Nikurashin M.2014.Sensitivity of the ocean state to lee wave-driven mixing.Journal of Physical Oceanography, 44(3):900-921,
Molemaker M J, McWilliams J C, Yavneh I.2005.Baroclinic instability and loss of balance.Journal of Physical Oceanography, 35(9):1505-1517,
Müller R D, Sdrolias M, Gaina C, Roest W R.2008.Age, spreading rates, and spreading asymmetry of the world's ocean crust.Geochemistry, Geophysics, Geosystems, 9(4):Q04006,
Munk W, Wunsch C.1998.Abyssal recipes II:energetics of tidal and wind mixing.Deep Sea Research Part I:Oceanographic Research Papers, 45(12):1977-2010,
Nikurashin M, Ferrari R, Grisouard N, Polzin K.2014.The impact of finite-amplitude bottom topography on internal wave generation in the southern Ocean.Journal of Physical Oceanography, 44(11):2938-2950,
Nikurashin M, Ferrari R.2010a.Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography:theory.Journal of Physical Oceanography, 40(5):1055-1074,
Nikurashin M, Ferrari R.2010b.Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography:application to the southern Ocean.Journal of Physical Oceanography,40(9):2025-2042,
Nikurashin M, Ferrari R.2011.Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean.Geophysical Research Letters, 38(8):L08610,
Polzin K L.2008.Mesoscale eddy-internal wave coupling.Part I:symmetry, wave capture, and results from the midocean dynamics experiment.Journal of Physical Oceanography, 38(11):2556-2574,
Polzin K L.2010.Mesoscale eddy-internal wave coupling.Part II:energetics and results from PolyMode.Journal of Physical Oceanography, 40(4):789-801,
Rimac A, von Storch J S, Eden C, Haak H.2013.The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean.Geophysical Research Letters, 40(18):4882-4886,
Scott R B, Goff J A, Garabato A C N, Nurser A J G.2011.Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography.Journal of Geophysical Research:Oceans, 116(C9):C09029,
Sen A, Scott R B, Arbic B K.2008.Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag:computations from currentmeter data.Geophysical Research Letters, 35(9):L09606,
Shakespeare C J, Taylor J R.2013.A generalized mathematical model of geostrophic adjustment and frontogenesis:uniform potential vorticity.Journal of Fluid Mechanics, 736:366-413,
Shakespeare C J, Taylor J R.2014.The spontaneous generation of inertia-gravity waves during frontogenesis forced by large strain:theory.Journal of Fluid Mechanics, 757:817-853,
Shakespeare C J, Taylor J R.2015.The spontaneous generation of inertia-gravity waves during frontogenesis forced by large strain:Numerical solutions.Journal of Fluid Mechanics, 772:508-534,
Shakespeare C J.2019.Spontaneous generation of internal waves.Physics Today, 72(6):34-39,
Sheen K L, Brearley J A, Garabato A C N, Smeed D A, Waterman S, Ledwell J R, Meredith M P, Laurent L S, Thurnherr A M, Toole J M, Watson A J.2013.Rates and mechanisms of turbulent dissipation and mixing in the southern ocean:results from the diapycnal and isopycnal mixing experiment in the southern ocean (DIMES).Journal of Geophysical Research:Oceans, 118(6):2774-2792,
Von Storch J S, Eden C, Fast I, Haak H, Hernández-Deckers D, Maier-Reimer E, Marotzke J, Stammer D.2012.An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation.Journal of Physical Oceanography, 42(12):2185-2205,
Waterman S, Garabato A C N, Polzin K L.2013.Internal waves and turbulence in the Antarctic Circumpolar Current.Journal of Physical Oceanography, 43(2):259-282,
Waterman S, Polzin K L, Garabato A C N, Sheen K L, Forryan A.2014.Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography.Journal of Physical Oceanography, 44(5):1466-1492,
Whittaker J M, Goncharov A, Williams S E, Müller R D, Leitchenkov G.2013.Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean.Geochemistry, Geophysics, Geosystems, 14(8):3297-3305,
Wright C J, Scott R B, Ailliot P, Furnival D.2014.Lee wave generation rates in the deep ocean.Geophysical Research Letters, 41(7):2434-2440,
Yang L W, Nikurashin M, Hogg A M, Sloyan B M.2018.Energy loss from transient eddies due to lee wave generation in the southern Ocean.Journal of Physical Oceanography, 48(12):2867-2885,
Yang Q X, Nikurashin M, Sasaki H, Sun H, Tian J W.2019.Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea.Scientific Reports, 9(1):556,
Zhang Y, Zhang Z G, Chen D K, Qiu B, Wang W.2020.Strengthening of the Kuroshio Current by intensifying tropical cyclones.Science, 368(6494):988-993,
Zheng K W, Nikurashin M.2019.Downstream propagation and remote dissipation of internal waves in the southern Ocean.Journal of Physical Oceanography, 49(7):1873-1887,
Copyright © Haiyang Xuebao