Cite this paper:
Yu SHI, Xiaolan PAN, Meng XU, Huiru LIU, Hanzhi XU, Maoxian HE. The role of Smad6 in immunity of the pearl oyster Pinctada fucata martensii[J]. Journal of Oceanology and Limnology, 2022, 40(3): 1135-1147

The role of Smad6 in immunity of the pearl oyster Pinctada fucata martensii

Yu SHI1,2, Xiaolan PAN1, Meng XU1, Huiru LIU1, Hanzhi XU1, Maoxian HE1,2
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China
Abstract:
Inhibitory Smads (I-Smads), which belong to the Smad family and inhibit bone morphogenic protein 2 (BMP2) signaling by a variety of mechanisms, can suppress innate immunity responses in vertebrates. However, there are no reports for the role of Smad6 in immunity in mollusks. In this study, we showed that Smad6 of the pearl oyster Pinctada fucata martensii was located in the Smad6 cluster of the phylogenetic tree; mRNA expression of Smad6 and Smad3 was up-regulated after lipopolysaccharide and polyinosinic: polycytidylic challenge; and transcript levels of Smad6 and Smad3 showed opposite patterns during wound healing. Under salinity stress, water inflow and outflow in the gills appear to be regulated by BMP2-Smads signals, and BMP2-Smads signaling may be closely related to the immune response. Our results indicate that Smad6 is involved in immunity, that it plays a positive role in the response to immune challenge and an inhibitory role during wound healing, and that Smad6 and Smad3 may work against each other.
Key words:    Smad6|BMP2-Smads signal pathway|expression|immunity|Pinctada fucata martensii   
Received: 2021-03-26   Revised:
Tools
PDF (657 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Yu SHI
Articles by Xiaolan PAN
Articles by Meng XU
Articles by Huiru LIU
Articles by Hanzhi XU
Articles by Maoxian HE
References:
Adema C M, Hanington P C, Lun C M, Rosenberg G H, Aragon A D, Stout B A, Lennard Richard M L, Gross P S, Loker E S.2010.Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes).Molecular Immunology, 47(4):849-860, https://doi.org/10.1016/j.molimm.2009.10.019.
Bai S T, Cao X.2002.A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-β signaling.Journal of Biological Chemistry, 277(6):4176-4182, https://doi.org/10.1074/jbc.M105105200.
Bai S T, Shi X M, Yang X L, Cao X.2000.Smad6 as a transcriptional corepressor.Journal of Biological Chemistry, 275(12):8267-8270, https://doi.org/10.1074/jbc.275.12.8267.
Bao Y B, Li L, Xu F, Zhang G F.2009.Intracellular copper/zinc superoxide dismutase from bay scallop Argopecten irradians:its gene structure, mRNA expression and recombinant protein.Fish & Shellfish Immunology, 27(2):210-220, https://doi.org/10.1016/j.fsi.2009.04.005.
Chen S, Han Y T, Chen H, Wu J, Zhang M.2018.Bcl11b regulates IL-17 through the TGF-β/Smad pathway in HDM-induced asthma.Allergy, Asthma & Immunology Research, 10(5):543-545, https://doi.org/10.4168/aair.2018.10.5.543.
Choi K C, Lee Y S, Lim S, Choi H K, Lee C H, Lee E K, Hong S, Kim I H, Kim S J, Park S H.2006.Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1.Nature Immunology, 7(10):1057-1065, https://doi.org/10.1038/ni1383.
De Zoysa M, Lee J.2009.Suppressor of cytokine signaling 2(SOCS-2) homologue in disk abalone:cloning, sequence characterization and expression analysis.Fish & Shellfish Immunology, 26(3):500-508, https://doi.org/10.1016/j.fsi.2009.02.006.
Ghosh S, May M J, Kopp E B.1998.NF-κB and Rel proteins:evolutionarily conserved mediators of immune responses.Annual Review of Immunology, 16:225-260, https://doi.org/10.1146/annurev.immunol.16.1.225.
Goto K, Kamiya Y, Imamura T, Miyazono K, Miyazawa K.2007.Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors.Journal of Biological Chemistry, 282(28):20603-20611, https://doi.org/10.1074/jbc.M702100200.
Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K.2001.The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling.Journal of Cell Biology, 155(6):1017-1028, https://doi.org/10.1083/jcb.200106023.
Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A.1998.Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor.Genes & Development, 12(2):186-197, https://doi.org/10.1101/gad.12.2.186.
Herpin A, Lelong C, Becker T, Rosa F, Favrel P, Cunningham C.2005.Structural and functional evidence for a singular repertoire of BMP receptor signal transducing proteins in the lophotrochozoan Crassostrea gigas suggests a shared ancestral BMP/activin pathway.The FEBS Journal, 272(13):3424-3440, https://doi.org/10.1111/j.1742-4658.2005.04761.x.
Hu B Q, Yi P P, Li Z F, Zhang M, Wen C G, Jian S Q, Yang G.2017.Molecular characterization of two distinct Smads gene and their roles in the response to bacteria change and wound healing from Hyriopsis cumingii.Fish & Shellfish Immunology, 67:129-140, https://doi.org/10.1016/j.fsi.2017.05.052.
Huang X D, Liu W G, Guan Y Y, Shi Y, Wang Q, Zhao M, Wu S Z, He M X.2012.Molecular cloning and characterization of class I NF-κB transcription factor from pearl oyster(Pinctada fucata).Fish & Shellfish Immunology, 33(3):659-666, https://doi.org/10.1016/j.fsi.2012.06.029.
Iijima M, Takeuchi T, Sarashina I, Endo K.2008.Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis.Development Genes and Evolution, 218(5):237-251, https://doi.org/10.1007/s00427-008-0217-0.
Ishida W, Hamamoto T, Kusanagi K, Yagi K, Kawabata M, Takehara K, Sampath T K, Kato M, Miyazono K.2000.Smad6 is a Smad1/5-induced smad inhibitor characterization of bone morphogenetic proteinresponsive element in the mouse Smad6 promoter.Journal of Biological Chemistry, 275(9):6075-6079, https://doi.org/10.1074/jbc.275.9.6075.
Itoh F, Asao H, Sugamura K, Heldin C H, ten Dijke P, Itoh S.2001.Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads.The EMBO Journal, 20(15):4132-4142, https://doi.org/10.1093/emboj/20.15.4132.
Kim K Y, Lee S Y, Cho Y S, Bang I C, Kim K H, Kim D S, Nam Y K.2007.Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus discus.Fish & Shellfish Immunology, 23(5):1043-1059, https://doi.org/10.1016/j.fsi.2007.04.010.
Kitamura S I, Jung S J, Suzuki S.2000.Seasonal change of infective state of marine birnavirus in Japanese pearl oyster Pinctada fucata.Archives of Virology, 145(10):2003-2014, https://doi.org/10.1007/s007050070036.
Kubota K, Tsuchihashi Y, Kogure T, Maeyama K, Hattori F, Kinoshita S, Sakuda S, Nagasawa H, Yoshimura E, Suzuki M.2017.Structural and functional analyses of a TIMP and MMP in the ligament of Pinctada fucata.Journal of Structural Biology, 199(3):216-224, https://doi.org/10.1016/j.jsb.2017.07.010.
Le Quéré H, Herpin A, Huvet A, Lelong C, Favrel P.2009.Structural and functional characterizations of an activin type II receptor orthologue from the pacific oyster Crassostrea gigas.Gene, 436(1-2):101-107, https://doi.org/10.1016/j.gene.2009.01.010.
Lee Y S, Park J S, Kim J H, Jung S M, Lee J Y, Kim S J, Park S H.2011.Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling.Nature Communications, 2:460, https://doi.org/10.1038/ncomms1469.
Lelong C, Badariotti F, Le Quéré H, Rodet F, Dubos M P, Favrel P.2007.Cg-TGF-β, a TGF-β/activin homologue in the Pacific Oyster Crassostrea gigas, is involved in immunity against Gram-negative microbial infection.Developmental & Comparative Immunology, 31(1):30-38, https://doi.org/10.1016/j.dci.2006.05.005.
Li C H, Sun H L, Chen A Q, Ning X X, Wu H F, Qin S, Xue Q Z, Zhao J M.2010.Identification and characterization of an intracellular Cu, Zn-superoxide dismutase (icCu/ZnSOD) gene from clam Venerupis philippinarum.Fish & Shellfish Immunology, 28(3):499-503, https://doi.org/10.1016/j.fsi.2009.11.021.
Li Z F, Zhu M X, Hu B Q, Liu W X, Wu J L, Wen C G, Jian S Q, Yang G.2020.Effects of suppressing Smads expression on wound healing in Hyriopsis cumingii.Fish & Shellfish Immunology, 97:455-464, https://doi.org/10.1016/j.fsi.2019.12.062.
Lieber M J, Luckhart S.2004.Transforming growth factor-βs and related gene products in mosquito vectors of human malaria parasites:signaling architecture for immunological crosstalk.Molecular Immunology, 41(10):965-977, https://doi.org/10.1016/j.molimm.2004.06.001.
Lin Y C, Vaseeharan B, Chen J C.2008.Identification of the extracellular copper-zinc superoxide dismutase(ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following β-glucan and peptidoglycan injections.Molecular Immunology, 45(5):1346-1355, https://doi.org/10.1016/j.molimm.2007.09.005.
Liu G, Huan P, Liu B Z.2014.Cloning and expression patterns of two Smad genes during embryonic development and shell formation of the Pacific oyster Crassostrea gigas.Chinese Journal of Oceanology and Limnology, 32(6):1224-1231, https://doi.org/10.1007/s00343-014-3360-7.
Miyashita T, Hanashita T, Toriyama M, Takagi R, Akashika T, Higashikubo N.2008.Gene cloning and biochemical characterization of the BMP-2 of Pinctada fucata.Bioscience, Biotechnology, and Biochemistry, 72(1):37-47, https://doi.org/10.1271/bbb.70302.
Miyazaki T, Goto K, Kobayashi T, Kageyama T, Miyata M.1999.Mass mortalities associated with a virus disease in Japanese pearl oysters Pinctada fucata martensii.Diseases of Aquatic Organisms, 37(1):1-12, https://doi.org/10.3354/dao037001.
Mokoena D, Sundar S, Kumar D, Houreld NN, Abrahamse H.2018.Role of photobiomodulation on the activation of the Smad pathway via TGF-beta in wound healing.J.Photoch.Photobio.B, 189:138-144, https://doi.org/10.1016/j.jphotobiol.2018.10.011.
Montagnani C, Le Roux F, Berthe F, Escoubas J M.2001.CgTIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms.FEBS Letters, 500(1-2):64-70, https://doi.org/10.1016/S0014-5793(01)02559-5.
Navarro J M.1988.The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782) (Bivalvia, Mytilidae).Journal of Experimental Marine Biology and Ecology, 122(1):19-33, https://doi.org/10.1016/0022-0981(88)90209-2.
Nederbragt A J, van Loon A E, Dictus W J A G.2002.Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism.Developmental Biology, 246(2):341-355, https://doi.org/10.1006/dbio.2002.0653.
Ni D J, Song L S, Gao Q, Wu L T, Yu Y D, Zhao J M, Qiu L M, Zhang H, Shi F F.2007.The cDNA cloning and mRNA expression of cytoplasmic Cu, Zn superoxide dismutase(SOD) gene in scallop Chlamys farreri.Fish & Shellfish Immunology, 23(5):1032-1042, https://doi.org/10.1016/j.fsi.2007.04.008.
Nicholas H R, Hodgkin J.2004.Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans.Molecular Immunology, 41(5):479-493, https://doi.org/10.1016/j.molimm.2004.03.037.
Pan X L, Liu H R, Xu M, Xu H Z, Zhang H, He M X.2020.Cloning and expression analysis of aquaporin gene AQP4 cDNA from Pinctada fucata martensii.Journal of Tropical Oceanography, 39(3):66-75, https://doi.org/10.11978/2019074.(in Chinese with English abstract)
Park E M, Kim Y O, Nam B H, Kong H J, Kim W J, Lee S J, Kong I S, Choi T J.2008.Cloning, characterization and expression analysis of the gene for a putative lipopolysaccharide-induced TNF-α factor of the Pacific oyster, Crassostrea gigas.Fish & Shellfish Immunology, 24(1):11-17, https://doi.org/10.1016/j.fsi.2007.07.003.
Pasantes-Morales H, Schousboe A.1997.Role of taurine in osmoregulation in brain cells:mechanisms and functional implications.Amino Acids, 12(3):281-292, https://doi.org/10.1007/BF01373008.
Potasman I, Paz A, Odeh M.2002.Infectious outbreaks associated with bivalve shellfish consumption:a worldwide perspective.Clinical Infectious Diseases, 35(8):921-928, https://doi.org/10.1086/342330.
Qureshi H Y, Ricci G, Zafarullah M.2008.Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1783(9):1605-1612, https://doi.org/10.1016/j.bbamcr.2008.04.005.
Raftery L A, Sutherland D J.1999.TGF-β family signal transduction in Drosophila development:from Mad to Smads.Developmental Biology, 210(2):251-268, https://doi.org/10.1006/dbio.1999.9282.
Reinhardt B, Broun M, Blitz I L, Bode H R.1996.HyBMP5-8b, a BMP5-8 orthologue, acts during axial patterning and tentacle formation in hydra.Developmental Biology, 267(1):790-794, https://doi.org/10.1016/j.ydbio.2003.10.031.
Savage C, Das P, Finelli A L, Townsend S R, Sun C Y, Baird S E, Padgett R W.1996.Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components.Proceedings of the National Academy of Sciences of the United States of America, 93(2):790-794, https://doi.org/10.1073/pnas.93.2.790.
Shi Y, Liu X C, Zhang H F, Zhang Y, Lu D Q, Lin H R.2012.Molecular identification of an androgen receptor and its changes in mRNA levels during 17α-methyltestosteroneinduced sex reversal in the orange-spotted grouper Epinephelus coioides.Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 163(1):43-50, https://doi.org/10.1016/j.cbpb.2012.04.011.
Shi Y, Pan X L, Xu M, Liu H R, Xu H Z, He M X.2021.The role of Smad1/5 in mantle immunity of the pearl oyster Pinctada fucata martensii.Fish & Shellfish Immunology, 113:208-215, https://doi.org/10.1016/j.fsi.2021.04.001.
Shi Y, Zhao M, He M X.2020.PfSMAD1/5 Can interact with PfSMAD4 to inhibit PfMSX to regulate shell biomineralization in Pinctada fucata martensii.Marine Biotechnology, 22(2):246-262, https://doi.org/10.1007/s10126-020-09948-5.
Shimizu K, Sarashina I, Kagi H, Endo K.2011.Possible functions of Dpp in gastropod shell formation and shell coiling.Development Genes and Evolution, 221(2):59, https://doi.org/10.1007/s00427-011-0358-4.
Verrecchia F, Chu M L, Mauviel A.2001.Identification of novel TGF-β/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach.Journal of Biological Chemistry, 276(20):17058-17062, https://doi.org/10.1074/jbc.M100754200.
von Bubnoff A, Cho K W Y.2001.Intracellular BMP signaling regulation in vertebrates:pathway or network? Developmental Biology, 239(1):1-14, https://doi.org/10.1006/dbio.2001.0388.
Wilder M N, Ikuta K, Atmomarsono M, Hatta T, Komuro K.1998.Changes in osmotic and ionic concentrations in the hemolymph of Macrobrachium rosenbergii exposed to varying salinities and correlation to ionic and crystalline composition of the cuticle.Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 119(4):941-950, https://doi.org/10.1016/S1095-6433(98)00008-7.
Xie Y H, Li X P, Xu Z X, Qian P, Li X L, Wang Y Q.2016.Effect of compound Maqin decoction on TGF-β1/Smad proteins and IL-10 and IL-17 content in lung tissue of asthmatic rats.Genetics and Molecular Research, 15(3):gmr7539, https://doi.org/10.4238/gmr.15037539.
Xu F, Liu C, Zhou D, Zhang L.2016.TGF-beta/SMAD Pathway and Its Regulation in Hepatic Fibrosis.J.Histochem.Cytochem., 64:157-67, https://doi.org/10.1369/0022155415627681.
Ying W Z, Aaron K J, Sanders P W.2013.Transforming growth factor-β regulates endothelial function during high salt intake in rats.Hypertension, 62(5):951-956, https://doi.org/10.1161/hypertensionaha.113.01835.
Ying W Z, Aaron K, Sanders P W.2008.Mechanism of dietary salt-mediated increase in intravascular production of TGF-β1.American Journal of Physiology-Renal Physiology, 295(2):F406-F414, https://doi.org/10.1152/ajprenal.90294.2008.
Ying W Z, Sanders P W.1998.Dietary salt enhances glomerular endothelial nitric oxide synthase through TGF-β1.American Journal of Physiology-Renal Physiology, 275(1):F18-F24, https://doi.org/10.1152/ajprenal.1998.275.1.F18.
Ying W Z, Sanders P W.1999.Dietary salt increases endothelial nitric oxide synthase and TGF-β1 in rat aortic endothelium.American Journal of PhysiologyRenal Physiology, 277(4):H1293-H1298, https://doi.org/10.1152/ajpheart.1999.277.4.H1293.
Ying W Z, Sanders P W.2002.Increased dietary salt activates rat aortic endothelium.Hypertension, 39(2):239-244, https://doi.org/10.1161/hy0202.104142.
Ying W Z, Sanders P W.2003.The interrelationship between TGF-β1 and nitric oxide is altered in salt-sensitive hypertension.American Journal of Physiology-Renal Physiology, 285(5):F902-F908, https://doi.org/10.1152/ajprenal.00177.2003.
Ying W Z., Aaron K J, Sanders P W.2012.Effect of aging and dietary salt and potassium intake on endothelial PTEN (Phosphatase and tensin homolog on chromosome 10) function.PLoS One, 7(11):e48715, https://doi.org/10.1371/journal.pone.0048715.
Yu Y D, Qiu L M, Song L S, Zhao J M, Ni D J, Zhang Y, Xu W.2007.Molecular cloning and characterization of a putative lipopolysaccharide-induced TNF-α factor (LITAF) gene homologue from Zhikong scallop Chlamys farreri.Fish& Shellfish Immunology, 23(2):419-429, https://doi.org/10.1016/j.fsi.2006.12.004.
Zhang D C, Jiang J J, Jiang S G, Ma J J, Su T F, Qiu L H, Zhu C Y, Xu X P.2009.Molecular characterization and expression analysis of a putative LPS-induced TNF-α factor (LITAF) from pearl oyster Pinctada fucata.Fish & Shellfish Immunology, 27(3):391-396, https://doi.org/10.1016/j.fsi.2009.04.006.
Zhang T, Wu J, Ungvijanpunya N, Jackson-Weaver O, Gou Y, Feng J, Ho T V, Shen Y, Liu J, Richard S, Jin J, Hajishengallis G, Chai Y, Xu J.2018.Smad6 methylation represses NFκB Activation and periodontal inflammation.Journal of Dental Research, 97(7):810-819, https://doi.org/10.1177/0022034518755688.
Zhang Y, Feng X H, Wu R Y, Derynck R.1996.Receptorassociated Mad homologues synergize as effectors of the TGF-β response.Nature, 383(6596):168-172, https://doi.org/10.1038/383168a0.
Zhao M, Shi Y, He M X, Huang X D, Wang Q.2016.PfSMAD4plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata.BMC Developmental Biology, 16:9, https://doi.org/10.1186/s12861-016-0110-4.
Zoccola D, Moya A, Béranger G E, Tambutté E, Allemand D, Carle G F, Tambutté S.2009.Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor.Marine Biotechnology, 11(2):260-269, https://doi.org/10.1007/s10126-008-9141-6.
Copyright © Haiyang Xuebao