Cite this paper:
Guoqing LI, Dingbo YAN, Pinhua XIA, Haipeng CAO, Tao LIN, Yin YI. Community structure and assembly of denitrifying bacteria in epiphytic biofilms in a freshwater lake ecosystem[J]. Journal of Oceanology and Limnology, 2022, 40(3): 1039-1050

Community structure and assembly of denitrifying bacteria in epiphytic biofilms in a freshwater lake ecosystem

Guoqing LI1, Dingbo YAN1, Pinhua XIA1, Haipeng CAO2, Tao LIN1, Yin YI2,3
1 Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China;
2 College of Life Sciences, Guizhou Normal University, Guiyang 550001, China;
3 State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry and Grassland Administration, Guizhou Normal University, Guiyang 550001, China
Abstract:
Denitrifying bacteria are a crucial component of aquatic ecosystem in nitrogen cycle. However, the denitrifying bacterial community dynamics and structure in epiphytic biofilms remain unexplored. The abundance of denitrification gene (nir) and structure of nirS-denitrifying bacterial community in the epiphytic biofilms collected in July and November of 2018 from a typical plateau lake (Caohai Wetland, Guizhou, China) were studied by Real-time Quantitative Polymerase Chain Reaction (qPCR) and highthroughput sequencing. Results show that the gene abundance of nirK was higher than that of nirS (P<0.05), and it was significantly different during the growth period (July) than the decline period (November). The denitrifying bacterial species was similar in the two months and shared 76.18% of OTUs. Proteobacteria (56.55%±22.15%) was the dominant phylum in all the samples. Epiphytic biofilms between growth period and decline period displayed significantly different microbial community structures due to differences in species abundance. Water temperature was the crucial factor that affected the denitrifying microbial community structure in our study. Environmental factors explain only partially the dynamic characteristics of denitrifying microbial communities, implying that the stochastic processes affected the construction of denitrifying microbial communities. As the null model analysis results show, dispersal limitation (stochastic) and undominated processes significantly influenced the assembly of denitrifying microbial communities. This study broadened our understanding of the denitrifying bacterial community structure and its function on epiphytic biofilms in freshwater ecosystems with new information provided.
Key words:    denitrifying bacteria|epiphytic biofilms|community assembly|null model   
Received: 2021-03-15   Revised:
Tools
PDF (907 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Guoqing LI
Articles by Dingbo YAN
Articles by Pinhua XIA
Articles by Haipeng CAO
Articles by Tao LIN
Articles by Yin YI
References:
Arnon S, Peterson C G, Gray K A, Packman A I.2007.Influence of flow conditions and system geometry on nitrate use by benthic biofilms:implications for nutrient mitigation.Environmental Science & Technology, 41(23):8142-8148, https://doi.org/10.1021/es0710048.
Astorga A, Oksanen J, Luoto M, Soininen J, Virtanen R, Muotka T.2012.Distance decay of similarity in freshwater communities:do macro- and microorganisms follow the same rules? Global Ecology and Biogeography, 21(3):365-375, https://doi.org/10.1111/j.1466-8238.2011.00681.x.
Bengtsson M M, Sjøtun K, Øvreas L.2010.Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea.Aquatic Microbial Ecology, 60(1):71-83, https://doi.org/10.3354/ame01409.
Borcard D, Gillet F, Legendre P.2011.Numerical Ecology with R.Springer, New York, NY.435p.
Casartelli M R, Ferragut C.2015.Influence of seasonality and rooted aquatic macrophyte on periphytic algal community on artificial substratum in a shallow tropical reservoir.International Review of Hydrobiology, 100(5-6):158-168, https://doi.org/10.1002/iroh.201401773.
Chen W D, Ren K X, Isabwe A, Chen H H, Liu M, Yang J.2019.Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons.Microbiome, 7(1):138, https://doi.org/10.1186/s40168-019-0749-8.
Coci M, Nicol G W, Pilloni G N, Schmid M, Kamst-Van Agterveld M P, Bodelier P L E, Laanbroek H J.2010.Quantitative assessment of ammonia-oxidizing bacterial communities in the epiphyton of submerged macrophytes in shallow lakes.Applied and Environmental Microbiology, 76(6):1813-1821, https://doi.org/10.1128/AEM.01917-09.
Dandie C E, Wertz S, Leclair C L, Goyer C, Burton D L, Patten C L, Zebarth B J, Trevors J T.2011.Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones.FEMS Microbiology Ecology, 77(1):69-82, https://doi.org/10.1111/j.1574-6941.2011.01084.x.
De-Bashan L E, Bashan Y.2010.Immobilized microalgae for removing pollutants:review of practical aspects.Bioresource Technology, 101(6):1611-1627, https://doi.org/10.1016/j.biortech.2009.09.043.
Doughari H J, Ndakidemi P A, Human I S, Benade S.2011.The ecology, biology and pathogenesis of Acinetobacter spp.:an overview.Microbes and Environments, 26(2):101-112, https://doi.org/10.1264/jsme2.ME10179.
Emerson B C, Gillespie R G.2008.Phylogenetic analysis of community assembly and structure over space and time.Trends in Ecology & Evolution, 23(11):619-630, https://doi.org/10.1016/j.tree.2008.07.005.
Eriksson P G.2001.Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes.Biogeochemistry, 55(1):29-44, https://doi.org/10.1023/A:1010679306361.
Evans S, Martiny J B H, Allison S D.2017.Effects of dispersal and selection on stochastic assembly in microbial communities.The ISME Journal, 11(1):176-185, https://doi.org/10.1038/ismej.2016.96.
Fan Z, Han R M, Ma J, Wang G X.2016.Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the shallow fresh Lake Taihu, China.Environmental Science and Pollution Research, 23(14):14102-14114, https://doi.org/10.1007/s11356-016-6390-1.
Fish J A, Chai B L, Wang Q, Sun Y N, Brown C T, Tiedje J M, Cole J R.2013.FunGene:the functional gene pipeline and repository.Frontiers in Microbiology, 4:291, https://doi.org/10.3389/fmicb.2013.00291.
Flemming H C, Wuertz S.2019.Bacteria and archaea on Earth and their abundance in biofilms.Nature Reviews Microbiology, 17(4):247-260, https://doi.org/10.1038/s41579-019-0158-9.
Florez J Z, Camus C, Hengst M B, Buschmann A H.2017.A functional perspective analysis of macroalgae and epiphytic bacterial community interaction.Frontiers in Microbiology, 8:2561, https://doi.org/10.3389/fmicb.2017.02561.
Foster R A, Kuypers M M M, Vagner T, Paerl R W, Musat N, Zehr J P.2011.Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses.The ISME Journal, 5(9):1484-1493, https://doi.org/10.1038/ismej.2011.26.
Graham E B, Crump A R, Resch C T, Fansler S, Arntzen E, Kennedy D W, Fredrickson J K, Stegen J C.2017.Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes.Environmental Microbiology, 19(4):1552-1567, https://doi.org/10.1111/1462-2920.13720.
Han B, Zhang S H, Zhang L S, Liu K H, Yan L Y, Wang P F, Wang C, Pang S.2018.Characterization of microbes and denitrifiers attached to two species of floating plants in the wetlands of Lake Taihu.PLoS One, 13(11):e0207443, https://doi.org/10.1371/journal.pone.0207443.
Hao B B, Wu H P, Cao Y, Xing W, Jeppesen E, Li W.2017.Comparison of periphyton communities on natural and artificial macrophytes with contrasting morphological structures.Freshwater Biology, 62(10):1783-1793, https://doi.org/10.1111/fwb.12991.
He D, Ren L J, Wu Q L.2014.Contrasting diversity of epibiotic bacteria and surrounding bacterioplankton of a common submerged macrophyte, Potamogeton crispus, in freshwater lakes.FEMS Microbiology Ecology, 90(3):551-562, https://doi.org/10.1111/1574-6941.12414.
He R J, Zeng J, Zhao D Y, Huang R, Yu Z B, Wu Q L.2020.Contrasting patterns in diversity and community assembly of Phragmites australis root-associated bacterial communities from different seasons.Applied and Environmental Microbiology, 86(14):e00379-20, https://doi.org/10.1128/AEM.00379-20.
Henry S, Baudoin E, López-Gutiérrez J C, Martin-Laurent F, Brauman A, Philippot L.2004.Quantification of denitrifying bacteria in soils by nirK gene targeted realtime PCR.Journal of Microbiological Methods, 59(3):327-335, https://doi.org/10.1016/j.mimet.2004.07.002.
Hou J, Cao X Y, Song C L, Zhou Y Y.2013.Predominance of ammonia-oxidizing archaea and nirK-gene-bearing denitrifiers among ammonia-oxidizing and denitrifying populations in sediments of a large urban eutrophic lake(Lake Donghu).Canadian Journal of Microbiology, 59(7):456-464, https://doi.org/10.1139/cjm-2013-0083.
Howarth R W.2008.Coastal nitrogen pollution:A review of sources and trends globally and regionally.Harmful Algae, 8(1):14-20, https://doi.org/10.1016/j.hal.2008.08.015.
Huang S, Chen C, Jaffé P R.2018.Seasonal distribution of nitrifiers and denitrifiers in urban river sediments affected by agricultural activities.Science of The Total Environment, 642:1282-1291, https://doi.org/10.1016/j.scitotenv.2018.06.116.
Ji B, Yang K, Zhu L, Jiang Y, Wang H Y, Zhou J, Zhang H N.2015.Aerobic denitrification:a review of important advances of the last 30 years.Biotechnology and Bioprocess Engineering, 20(4):643-651, https://doi.org/10.1007/s12257-015-0009-0.
Jiao S, Yang Y F, Xu Y Q, Zhang J, Lu Y H.2020.Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China.The ISME Journal, 14(1):202-216, https://doi.org/10.1038/s41396-019-0522-9.
Jung J, Yeom J, Kim J, Han J, Lim H S, Park H, Hyun S, Park W.2011.Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils.Research in Microbiology, 162(10):1018-1026, https://doi.org/10.1016/j.resmic.2011.07.007.
Knapp C W, Dodds W K, Wilson K C, O'Brien J M, Graham D W.2009.Spatial heterogeneity of denitrification genes in a highly homogenous urban stream.Environmental Science & Technology, 43(12):4273-4279, https://doi.org/10.1021/es9001407.
Körner S.1999.Nitrifying and denitrifying bacteria in epiphytic communities of submerged macrophytes in a treated sewage channel.Acta Hydrochimica et Hydrobiologica, 27(1):27-31, https://doi.org/10.1002/(sici)1521-401x(199901)27:1<27::aid-aheh27>3.0.co;2-1.
Kuehn K A, Francoeur S N, Findlay R H, Neely R K.2014.Priming in the microbial landscape:periphytic algal stimulation of litter-associated microbial decomposers.Ecology, 95(3):749-762, https://doi.org/10.1890/13-0430.1.
Kuypers M M M, Marchant H K, Kartal B.2018.The microbial nitrogen-cycling network.Nature Reviews Microbiology, 16(5):263-276.https://doi.org/10.1038/nrmicro.2018.9.
Lachnit T, Meske D, Wahl M, Harder T, Schmitz R.2011.Epibacterial community patterns on marine macroalgae are host-specific but temporally variable.Environmental Microbiology, 13(3):655-665, https://doi.org/10.1111/j.1462-2920.2010.02371.x.
Levi P S, Riis T, Alnøe A B, Peipoch M, Maetzke K, Bruus C, Baattrup-Pedersen A.2015.Macrophyte complexity controls nutrient uptake in lowland streams.Ecosystems, 18(5):914-931, https://doi.org/10.1007/s10021-015-9872-y.
Lindemann S, Zarnoch C B, Castignetti D, Hoellein T J.2016.Effect of Eastern Oysters (Crassostrea virginica) and Seasonality on Nitrite Reductase Gene Abundance (nirS, nirK, nrfA) in an Urban Estuary.Estuaries and Coasts, 39(1):218-232, https://doi.org/10.1007/s12237-015-9989-4.
Liu J Z, Wang F W, Liu W, Tang C L, Wu C X, Wu Y H.2016.Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton:from laboratory tank to polluted river.Bioresource Technology, 207:142-149, https://doi.org/10.1016/j.biortech.2016.02.011.
Liu K S, Liu Y Q, Hu A Y, Wang F, Chen Y Y, Gu Z Q, Anslan S, Hou J Z.2020.Different community assembly mechanisms underlie similar biogeography of bacteria and microeukaryotes in Tibetan lakes.FEMS Microbiology Ecology, 96(6):fiaa071, https://doi.org/10.1093/femsec/fiaa071.
Lu H Y, Wan J J, Li J Y, Shao H B, Wu Y H.2016.Periphytic biofilm:a buffer for phosphorus precipitation and release between sediments and water.Chemosphere, 144:2058-2064, https://doi.org/10.1016/j.chemosphere.2015.10.129.
Mancuso F P, D'hondt S, Willems A, Airoldi L, De Clerck O.2016.Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopyforming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin.Frontiers in Microbiology, 7:476, https://doi.org/10.3389/fmicb.2016.00476.
Mu X Y, Lv X Y, Liu W, Qiu C H, Ma Y, Zhang S H, Jeppesen E.2020.Biofilms attached to Myriophyllum spicatum play a dominant role in nitrogen removal in constructed wetland mesocosms with submersed macrophytes:evidence from 15N tracking, nitrogen budgets and metagenomics analyses.Environmental Pollution, 266:115203, https://doi.org/10.1016/j.envpol.2020.115203.
Nemergut D R, Costello E K, Hamady M, Lozupone C, Jiang L, Schmidt S K, Fierer N, Townsend A R, Cleveland C C, Stanish L, Knight R.2011.Global patterns in the biogeography of bacterial taxa.Environmental Microbiology, 13(1):135-144, https://doi.org/10.1111/j.1462-2920.2010.02315.x.
Palmer Jr R J, White D C.1997.Developmental biology of biofilms:implications for treatment and control.Trends in Microbiology, 5(11):435-440, https://doi.org/10.1016/S0966-842X(97)01142-6.
Palmer K, Biasi C, Horn M A.2012.Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra.The ISME Journal, 6(5):1058-1077, https://doi.org/10.1038/ismej.2011.172.
Ribot M, Martí E, Von Schiller D, Sabater F, Daims H, Battin T J.2012.Nitrogen processing and the role of epilithic biofilms downstream of a wastewater treatment plant.Freshwater Science, 31(4):1057-1069, https://doi.org/10.1899/11-161.1.
Roger A J, Muñoz-Gómez S A, Kamikawa R.2017.The origin and diversification of mitochondria.Current Biology, 27(21):R1177-R1192, https://doi.org/10.1016/j.cub.2017.09.015.
Saarenheimo J, Rissanen A J, Arvola L, Nykänen H, Lehmann M F, Tiirola M.2015.Genetic and environmental controls on nitrous oxide accumulation in lakes.PLoS One, 10(3):e0121201.https://doi.org/10.1371/journal.pone.0121201.
Sand-Jensen K, Revsbech N P, Jørgensen B B.1985.Microprofiles of oxygen in epiphyte communities on submerged macrophytes.Marine Biology, 89(1):55-62, https://doi.org/10.1007/BF00392877.
Seymour J R, Amin S A, Raina J B, Stocker R.2017.Zooming in on the phycosphere:the ecological interface for phytoplankton-bacteria relationships.Nature Microbiology, 2(7):17065, https://doi.org/10.1038/nmicrobiol.2017.65.
Søndergaard M, Jeppesen E, Lauridsen T L, Skov C, Van Nes E H, Roijackers R, Lammens E, Portielje R.2007.Lake restoration:successes, failures and long-term effects.Journal of Applied Ecology, 44(6):1095-1105, https://doi.org/10.1111/j.1365-2664.2007.01363.x.
Song Y Z, Wang J Q, Gao Y X, Xie X J.2015.The physiological responses of Vallisneria natans to epiphytic algae with the increase of N and P concentrations in water bodies.Environmental Science and Pollution Research, 22(11):8480-8487, https://doi.org/10.1007/s11356-014-3998-x.
Stegen J C, Lin X J, Fredrickson J K, Konopka A E.2015.Estimating and mapping ecological processes influencing microbial community assembly.Frontiers in Microbiology, 6:370, https://doi.org/10.3389/fmicb.2015.00370.
Sunagawa S, Coelho L P, Chaffron S, Kultima J R, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende D R, Alberti A, Cornejo-Castillo F M, Costea P I, Cruaud C, D'ovidio F, Engelen S, Ferrera I, Gasol J M, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos B T, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Coordinators T O, Bowler C, Vargas C D, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan M B, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas S G, Bork P.2015.Structure and function of the global ocean microbiome.Science, 348(6237):1261359, https://doi.org/10.1126/science.1261359.
Tripathi B M, Stegen J C, Kim M, Dong K, Adams J M, Lee Y K.2018.Soil pH mediates the balance between stochastic and deterministic assembly of bacteria.The ISME Journal, 12(4):1072-1083, https://doi.org/10.1038/s41396-018-0082-4.
Trumbo D R, Spear S F, Baumsteiger J, Storfer A.2013.Rangewide landscape genetics of an endemic Pacific northwestern salamander.Molecular Ecology, 22(5):1250-1266, https://doi.org/10.1111/mec.12168.
Vila-Costa M, Bartrons M, Catalan J, Casamayor E O.2014.Nitrogen-cycling genes in epilithic biofilms of oligotrophic high-altitude lakes (central Pyrenees, Spain).Microbial Ecology, 68(1):60-69, https://doi.org/10.1007/s00248-014-0417-2.
Wang K, Hu H J, Yan H Z, Hou D D, Wang Y T, Dong P S, Zhang D M.2019.Archaeal biogeography and interactions with microbial community across complex subtropical coastal waters.Molecular Ecology, 28(12):3101-3118, https://doi.org/10.1111/mec.15105.
Wu Y H.2016.Periphyton:Functions and Application in Environmental Remediation.Elsevier, Netherlands.402p.
Xia P H, Yan D B, Sun R G, Song X, Lin T, Yi Y.2020.Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China.Science of the Total Environment, 727:138398, https://doi.org/10.1016/j.scitotenv.2020.138398.
Xie W Y, Su J Q, Zhu Y G.2015.Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by Illumina high-throughput sequencing.Applied and Environmental Microbiology, 81(2):522-532, https://doi.org/10.1128/AEM.03191-14.
Yan D B, Xia P H, Song X, Lin T, Cao H P.2019.Community structure and functional diversity of epiphytic bacteria and planktonic bacteria on submerged macrophytes in Caohai Lake, southwest of China.Annals of Microbiology, 69(9):933-944, https://doi.org/10.1007/s13213-019-01485-4.
Yan L Y, Zhang S H, Lin D, Guo C, Yan L L, Wang S P, He Z L.2018.Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands.Science of the Total Environment, 622-623:121-126, https://doi.org/10.1016/j.scitotenv.2017.11.234.
Yu Z H, Liu J J, Li Y S, Jin J, Liu X B, Wang G H.2018.Impact of land use, fertilization and seasonal variation on the abundance and diversity of nirS-type denitrifying bacterial communities in a Mollisol in Northeast China.European Journal of Soil Biology, 85:4-11, https://doi.org/10.1016/j.ejsobi.2017.12.001.
Yuan Q, Liu P F, Lu Y H.2012.Differential responses of nirK- and nirS-carrying bacteria to denitrifying conditions in the anoxic rice field soil.Environmental Microbiology Reports, 4(1):113-122, https://doi.org/10.1111/j.1758-2229.2011.00311.x.
Zhang L S, Zhang S H, Lv X Y, Qiu Z, Zhang Z Q, Yan L Y.2018.Dissolved organic matter release in overlying water and bacterial community shifts in biofilm during the decomposition of Myriophyllum verticillatum.Science of the Total Environment, 633:929-937, https://doi.org/10.1016/j.scitotenv.2018.03.275.
Zhou J Z, Ning D L.2017.Stochastic community assembly:does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81(4):e00002-17, https://doi.org/10.1128/MMBR.00002-17.
Copyright © Haiyang Xuebao