Cite this paper:
Jing YANG, Haiguang PEI, Junping LÜ, Qi LIU, Fangru NAN, Xudong LIU, Shulian XIE, Jia FENG. Effects of phytoplankton community and interaction between environmental variables on nitrogen uptake and transformations in an urban river[J]. Journal of Oceanology and Limnology, 2022, 40(3): 1012-1026

Effects of phytoplankton community and interaction between environmental variables on nitrogen uptake and transformations in an urban river

Jing YANG, Haiguang PEI, Junping LÜ, Qi LIU, Fangru NAN, Xudong LIU, Shulian XIE, Jia FENG
School of Life Science, Shanxi University, Taiyuan 030006, China
Abstract:
Phytoplankton are not only the main bearer of the nitrogen cycle, but also a key link driving nitrogen cycle. However, most phytoplankton cannot directly use N2, and they must uptake nitrogenous nutrients (ammonium, nitrate, and urea) to meet their photosynthesis needs. We examined the uptake characteristics of several nitrogenous substrates using stable isotope technique and identified the potential nitrogen transformations in the Fenhe River. Results revealed that spring phytoplankton community composed of mainly Fragilaria, Ulothrix, Microcystis, and Synedra. Urea can meet the spring partial nitrogen requirement of phytoplankton. The large uptake rate of urea depended on urease, chlorophyll a, and nitrate concentrations as shown in random forest models. Cyanobacteria explained more than 42.8% of the total abundance at all sites in summer. Upstream was dominated by Actinastrum, and Chlorella was relevant in the downstream section. The uptake rates of ammonium were higher than those of nitrate and urea. In addition, the random forest model demonstrated that ammonium, urease, and dissolved oxygen (DO) were the major contributors to the ammonium uptake rates. Ammonium was taken up preferentially in autumn and phytoplankton (Cyclotella, Chlorella, and Pseudanabaena) appeared to be able to respond to changes in nitrogen forms by adjusting their community composition. Structural equation models demonstrated that temperature-induced changes in DO directly affected the transformations of different forms of nitrogen. At the same time, dissolved organic carbon can directly act on nutrients and then indirectly affect enzyme activity. There were great differences in the positive and negative effects of different paths in the process of nitrate reduction to nitrite and then reduction to ammonium in time and space. These findings provide a better understanding of the underlying mechanism of nitrogen uptake and the influences of interaction between environmental variables on nitrogen transformations in urban river ecosystems.
Key words:    phytoplankton    environmental variables    nitrogen uptake    transformation    urban river   
Received: 2021-03-29   Revised:
Tools
PDF (2054 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Jing YANG
Articles by Haiguang PEI
Articles by Junping LÜ
Articles by Qi LIU
Articles by Fangru NAN
Articles by Xudong LIU
Articles by Shulian XIE
Articles by Jia FENG
References:
Al-Qutob M, Häse C, Tilzer M M, Lazar B.2002.Phytoplankton drives nitrite dynamics in the Gulf of Aqaba, Red Sea.Marine Ecology Progress Series, 239:233-239, https://doi.org/10.3354/meps239233.
Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart H P.2018.Microplastic pollution increases gene exchange in aquatic ecosystems.Environmental Pollution, 237:253-261, https://doi.org/10.1016/j.envpol.2018.02.058.
Arora N, Philippidis G P.2021.Fucoxanthin production from diatoms:current advances and challenges.In:Mandotra S K, Upadhyay A K, Ahluwalia A S eds.Algae.Springer, Singapore.p.227-242.
Arora N, Tripathi S, Pruthi P A, Poluri K M, Poluri V.2020.Assessing the robust growth and lipid-accumulating characteristics of Scenedesmus sp.for biodiesel production.Environmental Science and Pollution Research, 27(22):27449-27456, https://doi.org/10.1007/s11356-019-07023-8.
Avery G B Jr, Biswas K F, Mead R, Southwell M, Willey J D, Kieber R J, Mullaugh K M.2013.Carbon isotopic characterization of hydrophobic dissolved organic carbon in rainwater.Atmospheric Environment, 68:230-234, https://doi.org/10.1016/j.atmosenv.2012.11.054.
Avery G B Jr, Willey J D, Kieber R J.2006.Carbon isotopic characterization of dissolved organic carbon in rainwater:terrestrial and marine influences.Atmospheric Environment, 40(39):7539-7545, https://doi.org/10.1016/j.atmosenv.2006.07.014.
Baer S E, Sipler R E, Roberts Q N, Yager P L, Frischer M E, Bronk D A.2017.Seasonal nitrogen uptake and regeneration in the western coastal Arctic.Limnology and Oceanography, 62(6):2463-2479, https://doi.org/10.1002/lno.10580.
Bhavya P S, Kang J J, Jang H K, Joo H, Lee J H, Lee J H, Park J W, Kim K, Kim H C, Lee S H.2020.The contribution of small phytoplankton communities to the total dissolved inorganic nitrogen assimilation rates in the East/Japan Sea:an experimental evaluation.Journal of Marine Science and Engineering, 8(11):854, https://doi.org/10.3390/jmse8110854.
Bhavya P S, Lee J H, Lee H W, Kang J J, Lee J H, Lee D, An S H, Stockwell D A, Whitledge T E, Lee S H.2018.First in situ estimations of small phytoplankton carbon and nitrogen uptake rates in the Kara, Laptev, and East Siberian seas.Biogeosciences, 15(18):5503-5517, https://doi.org/10.5194/bg-15-5503-2018.
Cai W, Li Y, Shen Y, Wang C, Wang P F, Wang L F, Niu L H, Zhang W L.2019.Vertical distribution and assemblages of microbial communities and their potential effects on sulfur metabolism in a black-odor urban river.Journal of Environmental Management, 235:368-376, https://doi.org/10.1016/j.jenvman.2019.01.078.
Cataldo D, Vinocur A, O'Farrell I, Paolucci E, Leites V, Boltovskoy D.2012.The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina):evidence from mesocosm experiments.Hydrobiologia, 680(1):25-38, https://doi.org/10.1007/s10750-011-0897-8.
Dawson J J C, Soulsby C, Tetzlaff D, Hrachowitz M, Dunn S M, Malcolm I A.2008.Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments.Biogeochemistry, 90(1):93-113, https://doi.org/10.1007/s10533-008-9234-3.
Dham V V, Wafar M, Heredia A M.2005.Nitrogen uptake by size-fractionated phytoplankton in mangrove waters.Aquatic Microbial Ecology, 41(3):281-291, https://doi.org/10.3354/ame041281.
Domingues R B, Barbosa A B, Sommer U, Galvão H M.2011.Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone:potential effects of cultural eutrophication.Aquatic Sciences, 73(3):331-343, https://doi.org/10.1007/s00027-011-0180-0.
Dugdale R C, Goering J J.1967.Uptake of new and regenerated forms of nitrogen in primary productivity.Limnology and Oceanography, 12(2):196-206, https://doi.org/10.4319/lo.1967.12.2.0196.
Fathi A A, Abdelzaher H M A, Flower R J, Ramdani M, Kraïem M M.2001.Phytoplankton communities of North African wetland lakes:the CASSARINA Project.Aquatic Ecology, 35(3-4):303-318, https://doi.org/10.1023/a:1011988722774.
Fathi A A, Al-Kahtani M A.2009.Water quality and planktonic communities in Al-Khadoud spring, Al-Hassa, Saudi Arabia.American Journal of Environmental Sciences, 5(3):434-443, https://doi.org/10.3844/ajessp.2009.434.443.
Fierer N, Bradford M A, Jackson R B.2007.Toward an ecological classification of soil bacteria.Ecology, 88(6):1354-1364, https://doi.org/10.1890/05-1839.
Finlay K, Patoine A, Donald D B, Bogard M J, Leavitt P R.2010.Experimental evidence that pollution with urea can degrade water quality in phosphorus-rich lakes of the Northern Great Plains.Limnology and Oceanography, 55(3):1213-1230, https://doi.org/10.4319/lo.2010.55.3.1213.
Galán Y A R, Del Socorro Daza Ardila D, Cardona W F C.2011.Diagnóstico actual de Los parámetros fisicoquímicos Como indicadores de contaminación ambiental EN el Río Apulo, Cundinamarca-Colombia.Tecnura, 15(28):53-67.
Glibert P M, Wilkerson F P, Dugdale R C, Raven J A, Dupont C L, Leavitt P R, Parker A E, Burkholder J M, Kana T M.2016.Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions.Limnology and Oceanography, 61(1):165-197, https://doi.org/10.1002/lno.10203.
Grimm N B, Foster D, Groffman P, Grove J M, Hopkinson C S, Nadelhoffer K J, Pataki D E, Peters D P C.2008.The changing landscape:ecosystem responses to urbanization and pollution across climatic and societal gradients.Frontiers in Ecology and the Environment, 6(5):264-272, https://doi.org/10.1890/070147.
Gu B J, Dong X L, Peng C H, Luo W D, Chang J, Ge Y.2012.The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China.Environmental Pollution, 171:30-37, https://doi.org/10.1016/j.envpol.2012.07.015.
Gücker B, Pusch M T.2006.Regulation of nutrient uptake in eutrophic lowland streams.Limnology and Oceanography, 51(3):1443-1453, https://doi.org/10.4319/lo.2006.51.3.1443.
Hayakawa A, Shimizu M, Woli K P, Kuramochi K, Hatano R.2006.Evaluating stream water quality through land use analysis in two grassland catchments:impact of wetlands on stream nitrogen concentration.Journal of Environmental Quality, 35(2):617-627, https://doi.org/10.2134/jeq2005.0343.
Hobbie S E, Finlay J C, Janke B D, Nidzgorski D A, Millet D B, Baker L A.2017.Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution.Proceedings of the National Academy of Sciences of the United States of America, 114(16):4177-4182, https://doi.org/10.1073/pnas.1618536114.
Hong H S, Wang Y J, Wang D Z.2011.Response of phytoplankton to nitrogen addition in the Taiwan strait upwelling region:nitrate reductase and glutamine synthetase activities.Continental Shelf Research, 31(S6):S57-S66, https://doi.org/10.1016/j.csr.2011.01.018.
Hu H J, Wei Y X.2006.The Freshwater Algae of ChinaSystematics, Taxonomy and Ecology.Science Press, Beijing.(in Chinese)
Hu H W, Wang J T, Li J, Shi X Z, Ma Y B, Chen D L, He J Z.2017.Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils.Environmental Science & Technology, 51(2):790-800, https://doi.org/10.1021/acs.est.6b03383.
Huang W M, Shao H, Li W, Jiang H S, Chen Y Y.2017.Effects of urea on growth and photosynthetic metabolism of two aquatic plants (Cabomba caroliniana A.Gray and Elodea nuttallii (Planch.) H.St.John).Aquatic Botany, 140:69-77, https://doi.org/10.1016/j.aquabot.2016.04.003.
Ibekwe A M, Ma J C, Murinda S E.2016.Bacterial community composition and structure in an urban river impacted by different pollutant sources.Science of The Total Environment, 566-567:1176-1185, https://doi.org/10.1016/j.scitotenv.2016.05.168.
Iriarte J L, Quiñones R A, González R R.2005.Relationship between biomass and enzymatic activity of a bloomforming dinoflagellate (Dinophyceae) in southern Chile(41°S):a field approach.Journal of Plankton Research, 27(2):159-166, https://doi.org/10.1093/plankt/fbh167.
Jobin L, Namour P.2017.Bioremediation in water environment:controlled electro-stimulation of organic matter selfpurification in aquatic environments.Advances in Microbiology, 7(12):813-852, https://doi.org/10.4236/aim.2017.712064.
Junqueira M V, Friedrich G, De Araujo P R P.2010.A saprobic index for biological assessment of river water quality in Brazil (Minas Gerais and Rio de Janeiro states).Environmental Monitoring and Assessment, 163(1-4):545-554, https://doi.org/10.1007/s10661-009-0857-1.
Kaboré S, Cecchi P, Mosser T, Toubiana M, Traoré O, Ouattara A S, Traoré A S, Barro N, Colwell R R, Monfort P.2018.Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso.Research in Microbiology, 169(1):1-10, https://doi.org/10.1016/j.resmic.2017.08.004.
Kamp A, Hogslund S, Risgaard-Petersen N, Stief P.2015.Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes.Frontiers in Microbiology, 6:1492, https://doi.org/10.3389/fmicb.2015.01492.
Kang Y, Kudela R M, Gobler C J.2017.Quantifying nitrogen assimilation rates of individual phytoplankton species and plankton groups during harmful algal blooms via sorting flow cytometry.Limnology and Oceanography Methods, 15(8):706-721, https://doi.org/10.1002/lom3.10193.
Kazi T G, Katz S A, Jenniss S W.1987.Spectrophotometry determination of nitrate nitrogen and nitrite nitrogen in sewage sludges.Spectroscopy Letters, 20(6-7):509-517, https://doi.org/10.1080/00387018708081571.
Killberg-Thoreson L, Baer S E, Sipler R E, Reay W G, Roberts Q N, Bronk D A.2021.Seasonal nitrogen uptake dynamics and harmful algal blooms in the York River, Virginia.Estuaries and Coasts, 44(3):750-768, https://doi.org/10.1007/s12237-020-00802-4.
Koike I, Sørensen J.1988.Nitrate reduction and denitrification in marine sediments.In:Blackburn TH, Sørensen J eds.Nitrogen Cycling in Coastal Marine Environments.John Wiley & Sons, Chichester.p.251-273.
Kuypers M M M, Marchant H K, Kartal B.2018.The microbial nitrogen-cycling network.Nature Reviews Microbiology, 16(5):263-276, https://doi.org/10.1038/nrmicro.2018.9.
Lai T V, Ryder M H, Rathjen J R, Bolan N S, Croxford A E, Denton M D.2021.Dissimilatory nitrate reduction to ammonium increased with rising temperature.Biology and Fertility of Soils, 57(3):363-372, https://doi.org/10.1007/s00374-020-01529-x.
Li W H, Tian Y Z, Shi G L, Guo C S, Li X, Feng Y C.2012.Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China.Ecotoxicology and Environmental Safety, 75:198-206, https://doi.org/10.1016/j.ecoenv.2011.08.021.
Liang Z W, Siegert M, Fang W W, Sun Y, Jiang F, Lu H, Chen G H, Wang S Q.2018.Blackening and odorization of urban rivers:a bio-geochemical process.FEMS Microbiology Ecology, 94(3):fix180, https://doi.org/10.1093/femsec/fix180.
Lin S S, Wang Y, Lin J F, Quan C S.2014.Response of planktonic and benthic microbial community to urban pollution from sewage discharge in Jilin reach of the second Songhua River, China.CLEAN-Soil Air Water, 42(10):1376-1383, https://doi.org/10.1002/clen.201200328.
Liu Y, Chen T T, Song S Q, Li C W.2015.Effects of nitrogenous nutrition on growth and nitrogen assimilation enzymes of dinoflagellate Akashiwo sanguinea.Harmful Algae, 50:99-106, https://doi.org/10.1016/j.hal.2015.10.005.
Lomas M W, Glibert P M.2000.Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates.Journal of Phycology, 36(5):903-913, https://doi.org/10.1046/j.1529-8817.2000.99029.x.
Lunau M, Voss M, Erickson M, Dziallas C, Casciotti K, Ducklow H.2013.Excess nitrate loads to coastal waters reduces nitrate removal efficiency:mechanism and implications for coastal eutrophication.Environmental Microbiology, 15(5):1492-1504, https://doi.org/10.1111/j.1462-2920.2012.02773.x.
Magalhaes J R, Huber D M.1991.Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species.Journal of Plant Nutrition, 14(2):175-185, https://doi.org/10.1080/01904169109364193.
McCarthy J J, Taylor W R, Taft J L.1977.Nitrogenous nutrition of the plankton in the Chesapeake Bay.1.Nutrient availability and phytoplankton preferences.Limnology and Oceanography, 22(6):996-1011.
McCarty G W.1995.The role of glutamine synthetase in regulation of nitrogen metabolism within the soil microbial community.Plant and Soil, 170(1):141-147, https://doi.org/10.1007/bf02183062.
Moschonas G, Gowen R J, Paterson R F, Mitchell E, Stewart B M, McNeill S, Glibert P M, Davidson K.2017.Nitrogen dynamics and phytoplankton community structure:the role of organic nutrients.Biogeochemistry, 134(1):125-145, https://doi.org/10.1007/s10533-017-0351-8.
Pan Y, Zhang Y S, Sun S C.2014.Phytoplankton-zooplankton dynamics vary with nutrients:a microcosm study with the cyanobacterium Coleofasciculus chthonoplastes and cladoceran Moina micrura.Journal of Plankton Research, 36(5):1323-1332, https://doi.org/10.1093/plankt/fbu057.
Polla W M, Bainotti M F, Novoa M D.2016.Estudio ficológico Y bacteriológico de Una Laguna Urbana de USO recreativo (Santa Fe, Argentina).Natura Neotropicalis, 1(47):21-42, https://doi.org/10.14409/natura.v1i47.5985.
Reinhardt M, Müller B, Gächter R, Wehrli B.2006.Nitrogen removal in a small constructed wetland:an isotope mass balance approach.Environmental Science & Technology, 40(10):3313-3319, https://doi.org/10.1021/es052393d.
Revilla M, Alexander J, Glibert P M.2005.Urea analysis in coastal waters:comparison of enzymatic and direct methods.Limnology and Oceanography Methods, 3(7):290-299, https://doi.org/10.4319/lom.2005.3.290.
Solomon C M, Alexander J A, Glibert P M.2007.Measuring urease activity in aquatic environmental samples.Limnology and Oceanography Methods, 5(9):280-288, https://doi.org/10.4319/lom.2007.5.280.
Solomon C M, Collier J L, Berg G M, Glibert P M.2010.Role of urea in microbial metabolism in aquatic systems:a biochemical and molecular review.Aquatic Microbial Ecology, 59(1):67-88, https://doi.org/10.3354/ame01390.
Song C, Liu X L, Song Y H, Liu R X, Gao H J, Han L, Peng J F.2017.Key blackening and stinking pollutants in Dongsha River of Beijing:spatial distribution and source identification.Journal of Environmental Management, 200:335-346, https://doi.org/10.1016/j.jenvman.2017.05.088.
Staley C, Unno T, Gould T J, Jarvis B, Phillips J, Cotner J B, Sadowsky M J.2013.Application of Illumina nextgeneration sequencing to characterize the bacterial community of the Upper Mississippi River.Journal of Applied Microbiology, 115(5):1147-1158, https://doi.org/10.1111/jam.12323.
Steele M K, Heffernan J B.2014.Morphological characteristics of urban water bodies:mechanisms of change and implications for ecosystem function.Ecological Applications, 24(5):1070-1084, https://doi.org/10.1890/13-0983.1.
Taboada M D L Á, De Marco S M, del Carmen Alderete M, de Lourdes Gultemirian M, Tracanna B C.2018.Evaluación del fitoplancton y la calidad del agua de un arroyo subtropical del Noroeste Argentino.Bonplandia, 27(2):135-155, https://doi.org/10.30972/bon.2723536.
Tan E, Zou W B, Jiang X L, Wan Xi H, Hsu T C, Zheng Z Z, Chen L, Xu M, Dai M H, Kao S J.2019.Organic matter decomposition sustains sedimentary nitrogen loss in the Pearl River Estuary, China.Science of the Total Environment, 648:508-517, https://doi.org/10.1016/j.scitotenv.2018.08.109.
Tantanasarit C, Englande A J, Babel S.2013.Nitrogen,phosphorus and silicon uptake kinetics by marine diatom Chaetoceros calcitrans under high nutrient concentrations.Journal of Experimental Marine Biology and Ecology, 446:67-75, https://doi.org/10.1016/j.jembe.2013.05.004.
Taylor P G, Townsend A R.2010.Stoichiometric control of organic carbon-nitrate relationships from soils to the sea.Nature, 464(7292):1178-1181, https://doi.org/10.1038/nature08985.
Treonis A M, Ostle N J, Stott A W, Primrose R, Grayston S J, Ineson P.2004.Identification of groups of metabolicallyactive rhizosphere microorganisms by stable isotope probing of PLFAs.Soil Biology & Biochemistry, 36(3):533-537, https://doi.org/10.1016/j.soilbio.2003.10.015.
Truesdale V W, Kennedy H, Agusti S, Waite T.2003.On the relative constancy of iodate and total-iodine concentrations accompanying phytoplankton blooms initiated in mesocosm experiments in Antarctica.Limnology and Oceanography, 48(4):1569-1574, https://doi.org/10.4319/lo.2003.48.4.1569.
Wang Hu, Liu Wei, An Xiaofei, Wang Jun Chen Zhenlou.2011a.Development of generic technology service platform for urban black-odor river treatment.In:2011 19th International Conference on Geoinformatics.IEEE, Shanghai.p.1-4, https://doi.org/10.1109/GeoInformatics.2011.5980822.
Wang Y S, Lou Z P, Sun C C, Sun S.2008.Ecological environment changes in Daya Bay, China, from 1982 to 2004.Marine Pollution Bulletin, 56(11):1871-1879, https://doi.org/10.1016/j.marpolbul.2008.07.017.
Wang Y S, Sun C C, Lou Z P, Wang H L, Mitchell B, Wu M L, Sun Z X.2011b.Identification of water quality and benthos characteristics in Daya Bay, China, from 2001 to 2004.Oceanological & Hydrobiological Studies, 40(1):82-95, https://doi.org/10.2478/s13545-011-0009-4.
Wen J Z, Xu H S.2010.Atlas of Common Freshwater Planktonic Algae in China.Shanghai Science Technology Press, Shanghai.225p.(in Chinese)
Yamamoto Y, Nakahara H.2009.Seasonal variations in the morphology of Bloom-forming cyanobacteria in a eutrophic pond.Limnology, 10(3):185-193, https://doi.org/10.1007/s10201-009-0270-z.
Yang B, Jiang Y J, He W, Liu W X, Kong X Z, Jørgensen S E, Xu F L.2016.The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake.Ecological Indicators, 66:153-162, https://doi.org/10.1016/j.ecolind.2016.01.013.
Yang Y G, Meng Z L, Jiao W T.2018.Hydrological and pollution processes in mining area of Fenhe River Basin in China.Environmental Pollution, 234:743-750, https://doi.org/10.1016/j.envpol.2017.12.018.
York J K, Tomasky G, Valiela I, Repeta D J.2007.Stable isotopic detection of ammonium and nitrate assimilation by phytoplankton in the Waquoit Bay estuarine system.Limnology and Oceanography, 52(1):144-155, https://doi.org/10.2307/40006069.
Yu C, Li C, Wang T, Zhang M, Xu J.2018.Combined effects of experimental warming and eutrophication on phytoplankton dynamics and nitrogen uptake.Water, 10(8):1057, https://doi.org/10.3390/w10081057.
Zhang X H, Wu Y Y, Gu B J.2015.Urban rivers as hotspots of regional nitrogen pollution.Environmental Pollution, 205:139-144.

Related Articles:
1.SONG Lun, YANG Guojun, WANG Nianbin, LU Xiaoqian.Relationship between environmental factors and plankton in the Bayuquan Port, Liaodong Bay, China: a five-year study[J]. Journal of Oceanology and Limnology, 2016,34(4): 654-671
2.ZHANG Haiping, CHEN Ruihong, LI Feipeng, CHEN Ling.Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures[J]. Journal of Oceanology and Limnology, 2015,33(2): 430-438
Copyright © Haiyang Xuebao