Cite this paper:
Yuting HAN, Yangang LI, Changsan XU, Lei LIU, Yanling ZHAO, Wenqing LI, Xiangzhou SONG. Coastal buoy observation of air-sea net heat flux in the East China Sea in summer 2020[J]. Journal of Oceanology and Limnology, 2022, 40(3): 907-921

Coastal buoy observation of air-sea net heat flux in the East China Sea in summer 2020

Yuting HAN1,2, Yangang LI3, Changsan XU1, Lei LIU4, Yanling ZHAO5, Wenqing LI1, Xiangzhou SONG1
1 Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources(MNR), Hohai University, Nanjing 210024, China;
2 National Marine Environmental Forecasting Center(NMEFC), Beijing 100081, China;
3 East China Sea Bureau of MNR, Shanghai 200081, China;
4 Institute of Oceanographic Instrumentation, Qilu University of Technology, Qingdao 266075, China;
5 The PLA 31010 Units, Beijing 100081, China
The full fluxes and associated air-sea variables based on three months of operational buoy observations in the East China Sea (ECS) in summer 2020 were analyzed for the first time. The surface net heat flux (Qnet) was positive (139.7±77.7 W/m2) and was dominated by the combined effects of solar shortwave radiation (SW) and latent heat fluxes (LH). The mean heat flux components of 4 reanalysis datasets (NCEP2, MERRA-2, CFSR, and ERA5) and buoy data were compared to assess the mean ability of the modeling/reanalysis simulation. Among the four components of air-sea flux, SW was the best simulated, while LH was the worst simulated. The longwave radiation (LW) and LH values from reanalysis were higher than those from buoy data, especially LH. The high LH resulted in low Qnet. Furthermore, the 4 reanalysis datasets were compared with the buoy dataset. Among all flux products, the difference in radiation flux was the smallest, while that in the turbulent flux was the greatest. The observed variables related to turbulent flux were analyzed to help determine the cause of the flux discrepancies. High wind speeds were the main cause of this difference. Using the variables provided by the reanalysis data and the same bulk formulas of the Coupled Ocean-Atmospheric Response Experiment (COARE 3.0), we found that the recalculated sensible heat flux (SH) and LH were closer to the observed heat fluxes than the direct model outputs. The significant differences between these methods could account for the discrepancies among different data. Among all air-sea flux products, the air-sea flux in ERA5 was closer to the in-situ observations than the other products. The comparison results of reanalysis data provide an important reference for more accurate studies of the summer heat flux in the ECS at the synoptic and climatic scales.
Key words:    buoy observations|East China Sea|air-sea turbulent heat flux|radiative flux|reanalysis   
Received: 2021-01-29   Revised:
PDF (1592 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Yuting HAN
Articles by Yangang LI
Articles by Changsan XU
Articles by Lei LIU
Articles by Yanling ZHAO
Articles by Wenqing LI
Articles by Xiangzhou SONG
Alappattu D P, Wang Q, Yamaguchi R, Lind R J, Reynolds M, Christman A J.2017.Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies.Journal of Geophysical Research:Oceans, 122(8):6470-6481,
Bjerknes J.1969.Atmospheric teleconnections from the equatorial pacific.Monthly Weather Review, 97(3):163-172,<0163:ATFTEP>2.3.CO;2.Brunke M A, Wang Z, Zeng X B, Bosilovich M, Shie C L.2011.An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets.Journal of Climate, 24(21):5469-5493,
Carton J A, Zhou Z X.1997.Annual cycle of sea surface temperature in the tropical Atlantic Ocean.Journal of Geophysical Research:Oceans, 102(C13):27813-27824,
Cayan D R.1992.Latent and sensible heat flux anomalies over the northern oceans:the connection to monthly atmospheric circulation.Journal of Climate, 5(4):354-369,<0354:LASHFA>2.0.CO;2.
Cess R D, Zhang M H, Minnis P, Corsetti L, Dutton E G, Forgan B W, Garber D P, Gates W L, Hack J J, Harrison E F, Jing X, Kiehi J T, Long C N, Morcrette J J, Potter G L, Ramanathan V, Ramanathan V, Subasilar B, Whitlock C H, Young D F, Zhou Y.1995.Absorption of solar radiation by clouds:observations versus models.Science, 267(5197):496-499,
Clayson C A, Fairall C W, Curry J A.1996.Evaluation of turbulent fluxes at the ocean surface using surface renewal theory.Journal of Geophysical Research:Oceans, 101(C12):28503-28513,
Cronin M F, McPhaden M J.1997.The upper ocean heat balance in the western equatorial Pacific warm pool during September-December 1992.Journal of Geophysical Research:Oceans, 102(C4):8533-8553,
Dickey T D, Manov D V, Weller R A, Siegel D A.1994.Determination of longwave heat flux at the air-sea interface using measurements from buoy platforms.Journal of Atmospheric and Oceanic Technology, 11(4):1057-1078,<1057:DOLHFA>2.0.CO;2.
Ding Y H.1994.Monsoons over China.Advances in Atmospheric Sciences, 11(2):252,
Edson J B, Jampana V, Weller R, Bigorre S, Plueddemann A, Fairall C, Miller S, Mahrt L, Vickers D, Hersbach H.2013.On the exchange of momentum over the open ocean.Journal of Physical Oceanography, 43(8):1589-1610,
Fairall C W, Bradley E F, Godfrey J S, Wick G A, Edson J B, Young G S.1996a.Cool-skin and warm-layer effects on sea surface temperature.Journal of Geophysical Research:Oceans, 101(C1):1295-1308,
Fairall C W, Bradley E F, Hare J E, Grachev A A, Edson J B.2003.Bulk parameterization of air-sea fluxes:updates and verification for the COARE algorithm.Journal of Climate, 16(4):571-591, 016<0571:BPOASF>2.0.CO;2.
Fairall C W, Bradley E F, Rogers D P, Edson J B, Young G S.1996b.Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment.Journal of Geophysical Research:Oceans, 101(C2):3747-3764,
Frankignoul C.1985.Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes.Reviews of Geophysics, 23(4):357-390,
Frankignoul C, Czaja A, L'Heveder B.1998.Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models.Journal of Climate, 11(9):2310-2324,<2310:ASFI TN>2.0.CO;2.
Frankignoul C, Kestenare E.2002.The surface heat flux feedback.Part I:estimates from observations in the Atlantic and the North Pacific.Climate Dynamics, 19(8):633-647,
Gelaro R, McCarty W, Suarez M J, Todling R, Molod A, Takacs L, Randles C, Darmenov A, Bosilovich M G, Reichle R, Wargan K, Coy L, Cullathe R, Draper C, Akella S, Buchard V, Conaty A, Da Silva A, Gu W, Kim G K, Koster R, Lucchesi R, Merkova D, Nielsen J E, Partyka G, Pawson S, Putman W, Rienecker M, Schubert S D, Sienkiewicz M, Zhao B.2017.The modern-era retrospective analysis for research and applications, version 2 (MERRA-2).Journal of Climate, 30(14):5419-5454,
Gleckler P J, Weare B C.1997.Uncertainties in global ocean surface heat flux climatologies derived from ship observations.Journal of Climate, 10(11):2764-2781,<2764:UIG OSH>2.0.CO;2.
Godfrey J S, Lindstrom E J.1989.The heat budget of the equatorial western Pacific surface mixed layer.Journal of Geophysical Research:Oceans, 94(C6):8007-8017,
Gosnell R, Fairall C W, Webster P J.1995.The sensible heat of rainfall in the tropical ocean.Journal of Geophysical Research:Oceans, 100(C9):18437-18442,
Graham N E, Barnett T P.1987.Sea surface temperature, surface wind divergence, and convection over tropical oceans.Science, 238(4827):657-659,
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu Schepers D, Simmons Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren D, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan R J, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, De Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J N.2020.The ERA5 global reanalysis.Quarterly Journal of the Royal Meteorological Society, 146(730):1999-2049,
Hersbach H, Bell W, Berrisford P, Horányi A J M S, Nicolas J, Radu R, Schepers D, Simmons A, Soci C, Dee D.2019.Global reanalysis:goodbye ERA-Interim, hello ERA5.Meteorology Section of ECMWF Newsletter, 159:17-24,
Josey S A.2001.A comparison of ECMWF, NCEP-NCAR,and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic.Journal of Climate, 14(8):1780-1789,<1780:ACOENN> 2.0.CO;2.
Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M, Potter G L.2002.NCEP-DOE AMIP II Reanalysis (R-2).Bulletin of the American Meteorological Society, 83:1631-1643,
Konda M, Ichikawa H, Tomita H, Cronin M F.2010.Surface heat flux variations across the Kuroshio extension as observed by surface flux buoys.Journal of Climate, 23(19):5206-5221,
Kubota M, Iwabe N, Cronin M F, Tomita H.2008.Surface heat fluxes from the NCEP/NCAR and NCEP/DOE reanalyses at the Kuroshio Extension Observatory buoy site.Journal of Geophysical Research:Oceans, 113(C2):C02009,
Large W G, Pond S.1981.Open ocean momentum flux measurements in moderate to strong winds.Journal of Physical Oceanography, 11:324-336,<0324:OOMFMI>2.0.CO;2.
Lau K M, Kim K M, Yang S.2000.Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon.Journal of Climate, 13(14):2461-2482,<2461:DABFCO>2.0.CO;2.
Liu W T, Katsaros K B, Businger J A.1979.Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface.Journal of Atmospheric Sciences, 36(9):1722-1735,<1722:BPO ASE>2.0.CO;2.
Louis J F.1979.A parametric model of vertical eddy fluxes in the atmosphere.Boundary-Layer Meteorology, 17(2):187-202,
Lu R Y.2001.Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool.Journal of the Meteorological Society of Japan, 79(3):771-783,
Monin A, Obukhov A.1954.Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere.Tr.Akad.Nauk SSSR Geophiz, 24(151):163-187.
Pilewskie P, Valero F P J.1995.Direct observations of excess solar absorption by clouds.Science, 267(5204):1626-1629,
Price J F.1979.Observations of a rain-formed mixed layer.Journal of Physical Oceanography, 9(3):643-649,<0643:OOARFM> 2.0.CO;2.
Ramanathan V, Subasilar B, Zhang G J, Conant W, Cess R D, Kiehi J T, Grassi H, Shi L.1995.Warm pool heat budget and shortwave cloud forcing:a missing physics? Science, 267(5197):499-503,
Saha S, Moorthi S, Pan H L, Wu X, Wang J, Nadiga S, Tripp P, Kistler P, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y T, Chuang H Y, Juang H M, Sela J, Iredell M, Treadon R, Kleist D, Delst P V, Keyser D, Derber J, Ek M, Meng J, We H, Yang R, Lord S, Dool H V D, Kumar A, Wang W, Long C, Cheliah M, Xue Y, Huang B, Schemm J K, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C Z, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R W, Rutledge G, Goldberg M.2010.The NCEP Climate Forecast System Reanalysis.Bulletin of American Meteorological Society, 91:1015-1057,
Song X Z, Ning C L, Duan Y L, Wang H W, Li C, Yang Y, Liu J J, Yu W D.2021.Observed extreme air-sea heat flux variations during three tropical cyclones in the tropical southeastern Indian Ocean.Journal of Climate, 34(9):3683-3705,
Song X Z, Yu L S.2017.Air-sea heat flux climatologies in the Mediterranean Sea:surface energy balance and its consistency with ocean heat storage.Journal of Geophysical Research:Oceans, 122(5):4068-4087,
Song X Z.2020a.Explaining the zonal asymmetry in the airsea net heat flux climatology over the Antarctic circumpolar current.Journal of Geophysical Research:Oceans, 125(6):e2020JC016215,
Song X Z.2020b.The importance of relative wind speed in estimating air-sea turbulent heat fluxes in bulk formulas:examples in the Bohai Sea.Journal of Atmospheric and Oceanic Technology, 37(4):589-603,
Song X Z.2021.The importance of including sea surface current when estimating air-sea turbulent heat fluxes and wind stress in the Gulf Stream region.Journal of Atmospheric and Oceanic Technology, 38(1):119-138,
Taylor K E.2001.Summarizing multiple aspects of model performance in a single diagram.Journal of Geophysical Research:Atmospheres, 106(D7):7183-7192,
Wang B, Wu R G, Fu X H.2000.Pacific-East Asian teleconnection:how does ENSO affect East Asian climate? Journal of Climate, 13(9):1517-1536,<1517:PEATHD>2.0.CO;2.
Wang B, Wu R G, Li T.2003.Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation.Journal of Climate, 16(8):1195-1211,<1195:AOIAII>2.0.CO;2.
Xie M M, Wang C Z.2020.Decadal variability of the anticyclone in the western North Pacific.Journal of Climate, 33(20):9031-9043,
Yu L S.2019.Global air-sea fluxes of heat, fresh water, and momentum:energy budget closure and unanswered questions.Annual Review of Marine Science, 11:227-248,
Copyright © Haiyang Xuebao