Cite this paper:
Peiwen ZHANG, Qun LI, Zhenhua XU, Baoshu YIN. Internal solitary wave generation by the tidal flows beneath ice keel in the Arctic Ocean[J]. Journal of Oceanology and Limnology, 2022, 40(3): 831-845

Internal solitary wave generation by the tidal flows beneath ice keel in the Arctic Ocean

Peiwen ZHANG1,3,4, Qun LI5, Zhenhua XU1,2,3,4,6, Baoshu YIN1,2,3,4,6
1 CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China;
2 Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
5 MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China;
6 CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
A series of non-hydrostatic, non-linear numerical simulations were carried out to investigate the generation and evolution of internal solitary waves (ISWs) through the interaction of a barotropic tidal current with an ice keel in the Arctic Ocean. During the interaction process, the internal surge was generated at first, and then the wave gradually steepened due to non-linearity during its propagation away from the ice keel. The internal surge eventually disintegrated into multi-modal and rank-ordered ISW packets with the largest having an amplitude of O(10) m. Sensitivity experiments demonstrated that the ISWs’ amplitudes and energy were proportional to the varying ice keel depths and barotropic tidal flow amplitudes, but were insensitive to the changing ice keel widths. Typical ISWs can enhance the turbulent dissipation rate of O(10-6) W/kg along their propagation path. Further, heat entrainment induced by the wave-ice interaction can reach O(10) MJ/m per tidal cycle. This study reveals a particular ISW generation mechanism and process in the polar ice environment, which could be important in impacting the energy transfer and heat balance in the Arctic Ocean.
Key words:    internal solitary wave (ISW)|barotropic tidal flow|ice keel|the Arctic Ocean   
Received: 2021-02-08   Revised:
Tools
PDF (3414 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Peiwen ZHANG
Articles by Qun LI
Articles by Zhenhua XU
Articles by Baoshu YIN
References:
Alford M H, Peacock T, Mackinnon J A, Nash J D, Buijsman M C, Centurioni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, Laurent L C S, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y.2015.The formation and fate of internal waves in the South China Sea.Nature, 521(7550):65-69, https://doi.org/10.1038/nature14399.
Baumann T M, Polyakov I V, Padman L, Danielson S, Fer I, Janout M, Williams W, Pnyushkov A V.2020.Arctic tidal current atlas.Scientific Data, 7(1):275, https://doi.org/10.1038/s41597-020-00578-z.
Bourgault D, Galbraith P S, Chavanne C.2016.Generation of internal solitary waves by frontally forced intrusions in geophysical flows.Nature Communications, 7(1):13606, https://doi.org/10.1038/ncomms13606.
Carr M, Davies P A, Hoebers R P.2015.Experiments on the structure and stability of mode-2 internal solitary-like waves propagating on an offset pycnocline.Physics of Fluids, 27(4):046602, https://doi.org/10.1063/1.4916881.
Carter G S, Gregg M C, Lien R C.2005.Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf.Continental Shelf Research, 25(12-13):1499-1520, https://doi.org/10.1016/j.csr.2005.04.011.
Chen G Y, Liu C T, Wang Y H, Hsu M K.2011.Interaction and generation of long-crested internal solitary waves in the South China Sea.Journal of Geophysical Research:Oceans, 116(C6):C06013, https://doi.org/10.1029/2010JC006392.
Chen Z W, Xie J S, Xu J X, Zhan J M, Cai S Q.2013.Energetics of nonlinear internal waves generated by tidal flow over topography.Ocean Modelling, 68:1-8, https://doi.org/10.1016/j.ocemod.2013.04.008.
Dossmann Y, Rosevear M G, Griffiths R W, Hogg A M, Hughes G O, Copeland M.2016.Experiments with mixing in stratified flow over a topographic ridge.Journal of Geophysical Research:Oceans, 121(9):6961-6977, https://doi.org/10.1002/2016JC011990.
Duda T F, Lynch J F, Irish J D, Beardsley R C, Ramp S R, Chiu C S, Tang T Y, Yang Y J.2004.Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea.IEEE Journal of Oceanic Engineering, 29(4):1105-1130, https://doi.org/10.1109/JOE.2004.836998.
Ekman V W.1904.On dead Water.Scientific Results of the Norwegian North Polar Expedition, 1893-96, 5:1-152.
Fer I, Koenig Z, Kozlov I E, Ostrowski M, Rippeth T P, Padman L, Bosse A, Kolås E.2020.Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins.Geophysical Research Letters, 47(16):e2020GL088083, https://doi.org/10.1029/2020GL088083.
Fer I.2009.Weak vertical diffusion allows maintenance of cold halocline in the central Arctic.Atmospheric and Oceanic Science Letters, 2(3):148-152, https://doi.org/10.1080/16742834.2009.11446789.
Garrett C, Kunze E.2007.Internal tide generation in the deep ocean.Annual Review of Fluid Mechanics, 39:57-87, https://doi.org/10.1146/annurev.fluid.39.050905.110227.
Grimshaw R, Helfrich K R.2018.Internal solitary wave generation by tidal flow over topography.Journal of Fluid Mechanics, 839:387-407, https://doi.org/10.1017/jfm.2018.21.
Guo C, Chen X, Vlasenko V, Stashchuk N.2011.Numerical investigation of internal solitary waves from the Luzon strait:generation process, mechanism and threedimensional effects.Ocean Modelling, 38(3-4):203-216, https://doi.org/10.1016/j.ocemod.2011.03.002.
Guo C, Chen X.2012.Numerical investigation of large amplitude second mode internal solitary waves over a slope-shelf topography.Ocean Modelling, 42:80-91, https://doi.org/10.1016/j.ocemod.2011.11.003.
Guthrie J D, Morison J H.2021.Not just sea ice:other factors important to near-inertial wave generation in the Arctic Ocean.Geophysical Research Letters, 48(3):e2020GL090508, https://doi.org/10.1029/2020GL090508.
Helfrich K R, Grimshaw R H J.2008.Nonlinear disintegration of the internal tide.Journal of Physical Oceanography, 38(3):686-701, https://doi.org/10.1175/2007JPO3826.1.
Jackson J M, Carmack E C, Mclaughlin F A, Allen S E, Ingram R G.2010.Identification, characterization, and change of the near-surface temperature maximum in the Canada basin, 1993-2008.Journal of Geophysical Research:Oceans, 115(C5):C05021, https://doi.org/10.1029/2009JC005265.
Johannessen O M, Sandven S, Chunchuzov I P, Shuchman R A.2019.Observations of internal waves generated by an anticyclonic eddy:a case study in the ice edge region of the Greenland Sea.Tellus A:Dynamic Meteorology and Oceanography, 71(1):1652881, https://doi.org/10.1080/1 6000870.2019.1652881.
Klymak J M, Legg S M.2010.A simple mixing scheme for models that resolve breaking internal waves.Ocean Modelling, 33(3-4):224-234, https://doi.org/10.1016/j.ocemod.2010.02.005.
Kozlov I E, Romanenkov D, Zimin A, Chapron B.2014.SAR observing large-scale nonlinear internal waves in the White Sea.Remote Sensing of Environment, 147:99-107, https://doi.org/10.1016/j.rse.2014.02.017.
Kozlov I E, Zubkova E V, Kudryavtsev V N.2017.Internal solitary waves in the Laptev Sea:first results of spaceborne SAR observations.IEEE Geoscience and Remote Sensing Letters, 14(11):2047-2051, https://doi.org/10.1109/LGRS.2017.2749681.
Lamb K G.2010.Energetics of internal solitary waves in a background sheared current.Non-linear Processes in Geophysics, 17(5):553-568, https://doi.org/10.5194/npg-17-553-2010.
Legg S, Huijts K M H.2006.Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography.Deep Sea Research Part II:Topical Studies in Oceanography, 53(1-2):140-156, https://doi.org/10.1016/j.dsr2.2005.09.014.
Lenn Y D, Rippeth T P, Old C P, Bacon S, Polyakov I, Ivanov V, Hölemann J.2011.Intermittent intense turbulent mixing under ice in the Laptev Sea Continental Shelf.Journal of Physical Oceanography, 41(3):531-547, https://doi.org/10.1175/2010JPO4425.1.
Lin Z H, Song J B.2012.Numerical studies of internal solitary wave generation and evolution by gravity collapse.Journal of Hydrodynamics, 24(4):541-553, https://doi.org/10.1016/S1001-6058(11)60276-X.
Lin Z H, Song J B.2014.Numerical studies on the degeneration of internal waves induced by an initial tilted pycnocline.Acta Oceanologica Sinica, 33(7):27-39, https://doi.org/10.1007/s13131-014-0503-9.
Liu A K, Ramp S R, Zhao Y H, Tang T Y.2004.A case study of internal solitary wave propagation during ASIAEX 2001.IEEE Journal of Oceanic Engineering, 29(4):1144-1156, https://doi.org/10.1109/JOE.2004.841392.
Liu A K, Su F C, Hsu M K, Kuo N J, Ho C R.2013.Generation and evolution of mode-two internal waves in the South China Sea.Continental Shelf Research, 59:18-27, https://doi.org/10.1016/j.csr.2013.02.009.
Lu P, Li Z J, Cheng B, Leppäranta M.2011.A parameterization of the ice-ocean drag coefficient.Journal of Geophysical Research:Oceans, 116(C7):C07019, https://doi.org/10.1029/2010JC006878.
Marchenko A.2008.Thermodynamic consolidation and melting of sea ice ridges.Cold Regions Science and Technology, 52(3):278-301, https://doi.org/10.1016/j.coldregions.2007.06.008.
Marsden R F, Paquet R, Ingram R G.1994.Currents under land-fast ice in the Canadian arctic archipelago part 1:vertical velocities.Journal of Marine Research, 52(6):1017-1036, https://doi.org/10.1357/0022240943076795.
Marshall J, Hill C, Perelman L, Adcroft A.1997.Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling.Journal of Geophysical Research, 102(3):5733-5752, https://doi.org/10.1029/96JC02776.
Maxworthy T.1979.A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge.Journal of Geophysical Research, 84(C1):338-346, https://doi.org/10.1029/JC084iC01p00338.
Nagai T, Hibiya T.2015.Internal tides and associated vertical mixing in the Indonesian Archipelago.Journal of Geophysical Research:Oceans, 120(5):3373-3390, https://doi.org/10.1002/2014JC010592.
Nash J D, Moum J N.2005.River plumes as a source of largeamplitude internal waves in the coastal ocean.Nature, 437(7057):400-403, https://doi.org/10.1038/nature03936.
Rainville L, Woodgate R A.2009.Observations of internal wave generation in the seasonally ice-free Arctic.Geophysical Research Letters, 36(23):L23604, https://doi.org/10.1029/2009GL041291.
Raju N J, Dash M K, Bhaskaran P K, Pandey P C.2021.Numerical investigation of bidirectional mode-1 and mode-2 internal solitary wave generation from north and south of Batti Malv island, Nicobar islands, India.Journal of Physical Oceanography, 51(1):47-62, https://doi.org/10.1175/JPO-D-19-0182.1.
Ramudu E, Gelderloos R, Yang D, Meneveau C, Gnanadesikan A.2018.Large eddy simulation of heat entrainment under arctic sea ice.Journal of Geophysical Research, 123(1):287-304, https://doi.org/10.1002/2017JC013267.
Rippeth T P, Lincoln B J, Lenn Y D, Green J A M, Sundfjord A, Bacon S.2015.Tide-mediated warming of arctic halocline by Atlantic heat fluxes over rough topography.NatureGeoscience, 8(3):191-194, https://doi.org/10.1038/ngeo2350.
Rippeth T P, Vlasenko V, Stashchuk N, Scannell B D, Green J A M, Lincoln B J, Bacon S.2017.Tidal conversion and mixing poleward of the critical latitude (an Arctic Case Study).Geophysical Research Letters, 44(24):12349-12357, https://doi.org/10.1002/2017GL075310.
Robertson R.2001.Internal tides and baroclinicity in the southern Weddell Sea:1.Model description.Journal of Geophysical Research, 106(C11):27001-27016, https://doi.org/10.1029/2000JC000475.
Shaw W J, Stanton T P, Mcphee M G, Morison J H, Martinson D G.2009.Role of the upper ocean in the energy budget of arctic sea ice during SHEBA.Journal of Geophysical Research:Oceans, 114(C6):C06012, https://doi.org/10.1029/2008JC004991.
Shroyer E L, Moum J N, Nash J D.2009.Observations of polarity reversal in shoaling non-linear internal waves.Journal of Physical Oceanography, 39(3):691-701, https://doi.org/10.1175/2008JPO3953.1.
Shroyer E L, Moum J N, Nash J D.2010.Mode 2 waves on the continental shelf:ephemeral components of the nonlinear internal wave field.Journal of Geophysical Research:Oceans, 115(C7):C07001, https://doi.org/10.1029/2009JC005605.
Skyllingstad E D, Paulson C A, Pegau W S, Mcphee M G, Stanton T.2003.Effects of keels on ice bottom turbulence exchange.Journal of Geophysical Research, 108(C12):3372, https://doi.org/10.1029/2002JC001488.
Smith M, Stammerjohn S, Persson O, Rainville L, Liu G Q, Perrie W, Robertson R, Jackson J, Thomson J.2018.Episodic reversal of autumn ice advance caused by release of ocean heat in the Beaufort Sea.Journal of Geophysical Research, 123(5):3164-3185, https://doi.org/10.1002/2018JC013764.
Song P Y, Chen X E.2020.Investigation of the internal tides in the northwest Pacific Ocean considering the background circulation and stratification.Journal of Physical Oceanography, 50(11):3165-3188, https://doi.org/10.1175/JPO-D-19-0177.1.
Stastna M, Olsthoorn J, Baglaenko A, Coutino A.2015.Strong mode-mode interactions in internal solitary-like waves.Physics of Fluids, 27(4):046604, https://doi.org/10.1063/1.4919115.
Stranne C, Mayer L, Weber T C, Ruddick B R, Jakobsson M, Jerram K, Weidner E, Nilsson J, Gårdfeldt K.2017.Acoustic mapping of thermohaline staircases in the Arctic Ocean.Scientific Reports, 7(1):15192, https://doi.org/10.1038/s41598-017-15486-3.
Strub-klein L, Sudom D.2012.A comprehensive analysis of the morphology of first-year sea ice ridges.Cold Regions Science and Technology, 82:94-109, https://doi.org/10.1016/j.coldregions.2012.05.014.
Tedford E W, Carpenter J R, Pawlowicz R, Pieters R, Lawrence G A.2009.Observation and analysis of shear instability in the Fraser river estuary.Journal of Geophysical Research:Oceans, 114(C11):C11006, https://doi.org/10.1029/2009JC005313.
Terletska K, Jung K T, Talipova T, Maderich V, Brovchenko I, Grimshaw R.2016.Internal breather-like wave generation by the second mode solitary wave interaction with a step.Physics of Fluids, 28(11):116602, https://doi.org/10.1063/1.4967203.
Theo G.2001.Internal and interfacial tides:beam scattering and local generation of solitary waves.Journal of Marine Research, 59(2):227-255, https://doi.org/10.1357/002224001762882646.
Timmermans M L, Proshutinsky A, Golubeva E, Jackson J M, Krishfield R, Mccall M, Platov G, Toole J, Williams W, Kikuchi T, Nishino S.2014.Mechanisms of pacific summer water variability in the arctic's central Canada basin.Journal of Geophysical Research, 119(11):7523-7548, https://doi.org/10.1002/2014JC010273.
Vlasenko V, Stashchuk N, Guo C, Chen X.2010.Multimodal structure of baroclinic tides in the South China Sea.Nonlinear Processes in Geophysics, 17(5):529-543, https://doi.org/10.5194/npg-17-529-2010.
Vlasenko V, Stashchuk N, Hutter K.2005.Baroclinic Tides:Theoretical Modeling and Observational Evidence.Cambridge University Press, Cambridge.p.246-247.
Wadhams P, Toberg N.2012.Changing characteristics of arctic pressure ridges.Polar Science, 6(1):71-77, https://doi.org/10.1016/j.polar.2012.03.002.
Wang J, Eicken H, Yu Y L, Bai X Z, Zhang J L, Hu H G, Wang D R, Ikeda M, Mizobata K, Overland J E.2014.Abrupt climate changes and emerging ice-ocean processes in the pacific arctic region and the Bering Sea.In:Grebmeier J M, Maslowski W eds.The Pacific Arctic Region.Springer, Dordrecht.p.65-99, https://doi.org/10.1007/978-94-017-8863-2_4.
Winters K B, Armi L.2014.Topographic control of stratified flows:upstream jets, blocking and isolating layers.Journal of Fluid Mechanics, 753(1):80-103, https://doi.org/10.1017/jfm.2014.363.
Xie X H, Cuypers Y, Bouruet-Aubertot P, Ferron B, Pichon A, Lourenco A, Cortes N.2013.Large-amplitude internal tides, solitary waves, and turbulence in the Central Bay of Biscay.Geophysical Research Letters, 40(11):2748-2754, https://doi.org/10.1002/grl.50533.
Xu Z H, Liu K, Yin B S, Zhao Z X, Wang Y, Li Q.2016.Longrange propagation and associated variability of internal tides in the South China Sea.Journal of Geophysical Research:Oceans, 121(11):8268-8286, https://doi.org/10.1002/2016JC012105.
Xu Z H, Wang Y, Liu Z Q, McWilliams J C, Gan J P.2021.Insight into the dynamics of the radiating internal tide associated with the kuroshio current.Journal of Geophysical Research:Oceans, 126(6):e2020JC017018, https://doi.org/10.1029/2020JC017018.
Xu Z H, Yin B S, Hou Y J, Fan Z S, Liu A K.2010.A study of internal solitary waves observed on the continental shelf in the northwestern South China Sea.Acta Oceanologica Sinica, 29(3):18-25, https://doi.org/10.1007/s13131-010-0033-z.
Yang Y J, Fang Y C, Tang T Y, Ramp S R.2010.Convex and concave types of second baroclinic mode internal solitary waves.Nonlinear Processes in Geophysics, 17(6):605-614, https://doi.org/10.5194/npg-17-605-2010.
You J, Xu Z H, Li Q, Robertson R, Zhang P W, Yin B S.2021.Enhanced internal tidal mixing in the Philippine Sea mesoscale environment.Nonlinear Processes in Geophysics, 28(2):271-284, https://doi.org/10.5194/npg-28-271-2021.
Zhang P W, Xu Z H, Li Q, Yin B S, Hou Y J, Liu A K.2018.The evolution of mode-2 internal solitary waves modulated by background shear currents.Nonlinear Processes in Geophysics, 25(2):441-455, https://doi.org/10.5194/npg-25-441-2018.
Zhao C, Xu Z H, Robertson R, Li Q, Wang Y, Yin B S.2021.The three-dimensional internal tide radiation and dissipation in the Mariana Arc-Trench system.Journal of Geophysical Research:Oceans, 126(5):e2020JC016502, https://doi.org/10.1029/2020JC016502.
Copyright © Haiyang Xuebao