Cite this paper:
Yujia YANG, Xiaoni LI, Lina SUN. Triterpenoid saponin biosynthesis genes and their expression patterns during the development of sea cucumber Apostichopus japonicus[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2295-2308

Triterpenoid saponin biosynthesis genes and their expression patterns during the development of sea cucumber Apostichopus japonicus

Yujia YANG1, Xiaoni LI2, Lina SUN2
1 Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
2 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Sea cucumbers are echinoderm species with a leathery skin and an elongated body. Natural compounds, including saponins, have been previously isolated from sea cucumber. The majority of saponins derived from this organism typically belong to the triterpene glycosides, which exhibit various biological effects (e.g., antifungal, cytotoxic, hemolytic, and cytostatic immunomodulatory activities). In the present study, 30 saponin biosynthesis enzymes, namely 2 AACTs, 2 FPSs, 2 HMGSs, 2 OSCs, 1 SS, 2 SEs, and 19 UGTs, were found in the genome of sea cucumber Apostichopus japonicus. Compared with upstream saponin biosynthesis enzymes (i.e., AACTs, FPSs, HMGSs, OSCs, and SSs), the downstream saponin biosynthesis enzymes (SEs and UGTs) shared lower amino acid sequence similarity with the corresponding genes in other echinoderms. It was proposed that the enzyme structures comprised both α-helices and β-sheets. Notably, only a low percentage of β-sheets were present in FPSs, OSCs, and SS. The saponin biosynthesis enzymes showed dynamic expression patterns during five critical developmental stages of A. japonicus (fertilized oocytes, blastula, gastrula, doliolaria, and penractula). The present study involved elucidation of putative saponin biosynthesis pathways in sea cucumber and provides a valuable platform for further investigation of saponin biosynthesis in echinoderms.
Key words:    triterpene saponin biosynthesis|sea cucumber|enzyme|expression|development   
Received: 2020-05-31   Revised: 2020-07-25
Tools
PDF (1862 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Yujia YANG
Articles by Xiaoni LI
Articles by Lina SUN
References:
Adzhubei I, Jordan D M, Sunyaev S R. 2013. Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, 76(1):7.20, https://doi.org/10.1002/0471142905.hg0720s76.
Aminin D L, Menchinskaya E S, Pisliagin E A, Silchenko A S, Avilov S A, Kalinin V I. 2015. Anticancer activity of sea cucumber triterpene glycosides. Marine Drugs, 13(3):1202-1223, https://doi.org/10.3390/md13031202.
Bahrami Y, Franco C M M. 2015. Structure elucidation of new acetylated saponins, Lessoniosides A, B, C, D, and E, and non-acetylated saponins, Lessoniosides F and G, from the viscera of the sea cucumber Holothuria lessoni. Marine Drugs,13(1):597-617, https://doi.org/10.3390/md13010597.
Bahrami Y, Zhang W, Franco C. 2014. Discovery of novel saponins from the viscera of the sea cucumber Holothuria lessoni. Marine Drugs, 12(5):2633-2667, https://doi.org/10.3390/md12052633.
Bordbar S, Anwar F, Saari N. 2011. High-value components and bioactives from sea cucumbers for functional foods-a review. Marine Drugs, 9(10):1761-1805, https://doi.org/10.3390/md9101761.
Caulier G, Van Dyck S, Gerbaux P, Eeckhaut I, Flammang P. 2011. Review of saponin diversity in sea cucumbers belonging to the family Holothuriidae. SPC Beche-demer Information Bulletin, 31(1):48-54.
Chang W C, Song H, Liu H W, Liu P H. 2013. Current development in isoprenoid precursor biosynthesis and regulation. Current Opinion in Chemical Biology, 17(4):571-579, https://doi.org/10.1016/j.cbpa.2013.06.020.
Chen C, Han X Q, Dong P, Li Z J, Yanagita T, Xue C H, Zhang T T, Wang Y M. 2018. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice. Food & Function, 9(2):861-870, https://doi.org/10.1039/C7FO01599B.
Claereboudt E J S, Caulier G, Decroo C, Colson E, Gerbaux P, Claereboudt M R, Schaller H, Flammang P, Deleu M, Eeckhaut I. 2019. Triterpenoids in echinoderms:fundamental differences in diversity and biosynthetic pathways. Marine Drugs, 17(6):352, https://doi.org/10.3390/md17060352.
Cordeiro N L, Kerr R G, Djerassi C. 1988. Biosynthetic studies of marine lipids 15. Conversion of parkeol (lanosta-9(11),24-dien-3β-ol) to 14α-methylcholest-9(11)-en-3β-ol in the sea cucumber Holothuria arenicola. Tetrahedron Letters, 29(18):2159-2162, https://doi.org/10.1016/S0040-4039(00)86698-8.
Darriba D, Taboada G L, Doallo R, Posada D. 2011. ProtTest 3:fast selection of best-fit models of protein evolution. Bioinformatics, 27(8):1164-1165, https://doi.org/10.1093/bioinformatics/btr088.
Ding L, Zhang T T, Che H X, Zhang L Y, Xue C H, Chang Y G, Wang Y M. 2018. Saponins of sea cucumber attenuate atherosclerosis in ApoE-/- mice via lipid-lowering and antiinflammatory properties. Journal of Functional Foods, 48:490-497, https://doi.org/10.1016/j.jff.2018.07.046.
Edgar R C. 2004. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5):1792-1797, https://doi.org/10.1093/nar/gkh340.
Erthmann P Ø, Agerbirk N, Bak S. 2018. A tandem array of UDP-glycosyltransferases from the UGT73C subfamily glycosylate sapogenins, forming a spectrum of mono-and bisdesmosidic saponins. Plant Molecular Biology, 97(1-2):37-55, https://doi.org/10.1007/s11103-018-0723-z.
Forester J, Hartmut T. 2006. MetaCyc Pathway:saponin biosynthesis I. Advances in Experimental Medicine and Biology, 405:377-385.
Francis G, Kerem Z, Makkar H P S, Becker K. 2002. The biological action of saponins in animal systems:a review. British Journal of Nutrition, 88(6):587-605, https://doi. org/10.1079/BJN2002725.
Guex N, Peitsch M C. 1997. SWISS-MODEL and the Swiss-Pdb Viewer:an environment for comparative protein modeling. Electrophoresis, 18(15):2714-2723, https://doi.org/10.1002/elps.1150181505.
Haapalainen A M, Meriläinen G, Pirilä P L, Kondo N, Fukao T, Wierenga R K. 2007. Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase:the importance of potassium and chloride ions for its structure and function. Biochemistry, 46(14):4305-4321, https://doi.org/10.1021/bi6026192.
Han X Q, Zhang L Y, Ding L, Shi H H, Xue C H, Zhang T T, Wang Y M. 2019. Synergistic effect of sea cucumber saponins and EPA-enriched phospholipids on insulin resistance in high-fat diet-induced obese mice. Food & Function, 10(7):3955-3964, https://doi.org/10.1039/C9FO01147A.
Haralampidis K, Trojanowska M, Osbourn A E. 2002. Biosynthesis of triterpenoid saponins in plants. In:Dutta N N, Hammar F, Haralampidis K, Karanth N G, König A, Krishna S H, Kunze G, Nagy E, Orlich B, Osbourn A E, Raghavarao K S M S, Riedel K, Sahoo G C, Schomäcker R, Srinivas N D, Trojanowska M eds. History and Trends in Bioprocessing and Biotransformation. Springer, Berlin.p.31-49, https://doi.org/10.1007/3-540-44604-4_2.
Itkin M, Heinig U, Tzfadia O, Bhide A J, Shinde B, Cardenas P D, Bocobza S E, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri A P, Aharoni A. 2013. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science, 341(6142):175-179, https://doi.org/10.1126/science.1240230.
Kensil C R. 1996. Saponins as vaccine adjuvants. Critical Reviews in Therapeutic Drug Carrier Systems, 13(1-2):1-55.
Kim T D, Han J Y, Huh G H, Choi Y E. 2011. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant and Cell Physiology, 52(1):125-137, https://doi.org/10.1093/pcp/pcq179.
Krokida A, Delis C, Geisler K, Garagounis C, Tsikou D, Peña-Rodríguez L M, Katsarou D, Field B, Osbourn A E, Papadopoulou K K. 2013. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytologist, 200(3):675-690, https://doi.org/10.1111/nph.12414.
Kwon T R, Oh C T, Bak D H, Kim J H, Seok J, Lee J H, Lim S H, Yoo K H, Kim B J, Kim H. 2018. Effects on skin of Stichopus japonicus viscera extracts detected with saponin including Holothurin A:down-regulation of melanin synthesis and up-regulation of neocollagenesis mediated by ERK signaling pathway. Journal of Ethnopharmacology, 226:73-81, https://doi.org/10.1016/j.jep.2018.08.007.
Lee R G, Willingham M C, Davis M A, Skinner K A, Rudel L L. 2000. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. Journal of Lipid Research, 41(12):1991-2001.
Li B, Dewey C N. 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1):323, https://doi.org/10.1186/1471-2105-12-323.
Li Y L, Wang R J, Xun X G, Wang J, Bao L S, Thimmappa R, Ding J, Jiang J W, Zhang L H, Li T Q, Lv J, Mu C, Hu X L, Zhang L L, Liu J, Li Y Q, Yao L J, Jiao W Q, Wang Y F, Lian S S, Zhao Z L, Zhan Y Y, Huang X T, Liao H, Wang J, Sun H Z, Mi X, Xia Y, Xing Q, Lu W, Osbourn A, Zhou Z C, Chang Y Q, Bao Z M, Wang S. 2018. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation. Cell Discovery, 4(1):29, https://doi.org/10.1038/s41421-018-0030-5.
Liu H L, Kong X, Chen J W, Zhang H B. 2018. De novo sequencing and transcriptome analysis of Stichopus horrens to reveal genes related to biosynthesis of triterpenoids. Aquaculture, 491:358-367, https://doi.org/10.1016/j.aquaculture.2018.01.012.
Luskey K L, Stevens B. 1985. Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterolregulated degradation. Journal of Biological Chemistry, 260(18):10271-10277.
Maier M S, Roccatagliata A J, Kuriss A, Chludil H, Seldes A M, Pujol C A, Damonte E B. 2001. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. Journal of Natural Products, 64(6):732-736, https://doi.org/10.1021/np000584i.
Makarieva T N, Stonik V A, Kapustina I I, Boguslavsky V M, Dmitrenoik A S, Kalinin V I, Cordeiro M L, Djerassi C. 1993. Biosynthetic studies of marine lipids. 42.
Biosynthesis of steroid and triterpenoid metabolites in the sea cucumber Eupentacta fraudatrix. Steroids, 58(11):508-517, https://doi.org/10.1016/0039-128X(93)90026-J.
Marchler-Bauer A, Lu S, Anderson J B, Chitsaz F, Derbyshire M K, DeWeese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Jackson J D, Ke Z X, Lanczycki C J, Lu F, Marchler G H, Mullokandov M, Omelchenko M V, Robertson C L, Song J S, Thanki N, Yamashita R A, Zhang D C, Zhang N G, Zheng C J, Bryant S H. 2010. CDD:a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research, 39(S1):D225-D229, https://doi.org/10.1093/nar/gkq1189.
Meng J, Hu X Q, Zhang T T, Dong P, Li Z J, Xue C H, Chang Y G, Wang Y M. 2018. Saponin from sea cucumber exhibited more significant effects than ginsenoside on ameliorating high fat diet-induced obesity in C57BL/6 mice. MedChemComm, 9(4):725-734, https://doi.org/10.1039/C7MD00653E.
Mitu S A, Bose U, Suwansa-Ard S, Turner L H, Zhao M, Elizur A, Ogbourne S M, Shaw P N, Cummins S F. 2017. Evidence for a saponin biosynthesis pathway in the body wall of the commercially significant sea cucumber Holothuria scabra. Marine Drugs, 15(11):349, https://doi.org/10.3390/md15110349.
Miziorko H M. 2011. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Archives of Biochemistry and Biophysics, 505(2):131-143, https://doi.org/10.1016/j.abb.2010.09.028.
Moghimipour E, Handali S. 2015. Saponin:properties, methods of evaluation and applications. Annual Research & Review in Biology, 5(3):207-220, https://doi.org/10.9734/ARRB/2015/11674.
Moses T, Papadopoulou K K, Osbourn A. 2014. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Critical Reviews in Biochemistry and Molecular Biology, 49(6):439-462, https://doi.org/10.3109/10409238.2014.953628.
Mugford S T, Louveau T, Melton R, Qi X Q, Bakht S, Hill L, Tsurushima T, Honkanen S, Rosser S J, Lomonossoff G P, Osbourn A. 2013. Modularity of plant metabolic gene clusters:a trio of linked genes that are collectively required for acylation of triterpenes in oat. The Plant Cell, 25(3):1078-1092, https://doi.org/10.1105/tpc.113.110551.
Mugford S T, Osbourn A. 2012. Saponin synthesis and function. In:Concepts N, Approaches E eds. Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York. p.405-424, https://doi.org/10.1007/978-1-4614-4063-5_28.
Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C, Ferrin T E. 2004. UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13):1605-1612, https://doi.org/10.1002/jcc.20084.
Qian J Y, Liu Y, Chao N X, Ma C T, Chen Q C, Sun J, Wu Y S. 2017. Positive selection and functional divergence of farnesyl pyrophosphate synthase genes in plants. BMC Molecular Biology, 18(1):3, https://doi.org/10.1186/s12867-017-0081-4.
Rokosz L L, Boulton D A, Butkiewicz E A, Sanyal G, Cueto M A, Lachance P A, Hermes J D. 1994. Human cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase:expression, purification, and characterization of recombinant wild-type and Cys129 mutant enzymes. Archives of Biochemistry and Biophysics, 312(1):1-13, https://doi.org/10.1006/abbi.1994.1273.
Rost B, Yachdav G, Liu J F. 2004. The PredictProtein server. Nucleic Acids Research, 32(S2):W321-W326, https://doi.org/10.1093/nar/gkh377.
Schultz J, Copley R R, Doerks T, Ponting C P, Bork P. 2000. SMART:a web-based tool for the study of genetically mobile domains. Nucleic Acids Research, 28(1):231-234, https://doi.org/10.1093/nar/28.1.231.
Seki H, Tamura K, Muranaka T. 2015. P450s and UGTs:key players in the structural diversity of triterpenoid saponins. Plant and Cell Physiology, 56(8):1463-1471, https://doi.org/10.1093/pcp/pcv062.
Silchenko A S, Kalinovsky A I, Avilov S A, Andryjashchenko P V, Dmitrenok P S, Kalinin V I, Stonik V A. 2012.3β-OGlycosylated 16β-acetoxy-9β-H-lanosta-7, 24-diene-3β, 18, 20β-triol, an intermediate metabolite from the sea cucumber Eupentacta fraudatrix and its biosynthetic significance. Biochemical Systematics and Ecology, 44:53-60, https://doi.org/10.1016/j.bse.2012.04.008.
Skropeta D. 2008. Deep-sea natural products. Natural Product Reports, 25(6):1131-1166, https://doi.org/10.1039/b808743a.
Stonik V A. 2001. Marine polar steroids. Russian Chemical Reviews, 70(8):673-715, https://doi.org/10.1070/RC2001v070n08ABEH000679.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6:molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12):2725-2729, https://doi.org/10.1093/molbev/mst197.
Van Dyck S, Gerbaux P, Flammang P. 2010. Qualitative and quantitative saponin contents in five sea cucumbers from the Indian Ocean. Marine Drugs, 8(1):173-189, https://doi.org/10.3390/md8010173.
Vincken J P, Heng L, De Groot A, Gruppen H. 2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68(3):275-297, https://doi.org/10.1016/j.phytochem.2006.10.008.
Wang W, Zhao Y Q, Rayburn E R, Hill D L, Wang H, Zhang R W. 2007. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemotherapy and Pharmacology, 59(5):589-601, https://doi.org/10.1007/s00280-006-0300-z.
Xiao G Z, Shao X F, Zhu D P, Yu B. 2019. Chemical synthesis of marine saponins. Natural Product Reports, 36(5):769-787, https://doi.org/10.1039/C8NP00087E.
Xu J, Chu Y, Liao B S, Xiao S M, Yin Q G, Bai R, Su H, Dong L L, Li X W, Qian J, Zhang J J, Zhang Y J, Zhang X Y, Wu M L, Zhang J, Li G Z, Zhang L, Chang Z Z, Zhang Y B, Jia Z W, Liu Z X, Daniel A, Ruth N, Zhang L J, Cheng R Y, Zhu Y J, Zhu G W, Rao W, Zhou C, Qiao L R, Huang Z H, Cheng Y C, Chen S L. 2017. Panax ginseng genome examination for ginsenoside biosynthesis. GigaScience, 6(11):1-15, https://doi.org/10.1093/gigascience/gix093.
Yang Y, Laval S, Yu B. 2014. Chemical synthesis of saponins. Advances in Carbohydrate Chemistry and Biochemistry, 71:137-226, https://doi.org/10.1016/B978-0-12-800128-8.00002-9.
Zhang X J, Sun L N, Yuan J B, Sun Y M, Gao Y, Zhang L B, Li S H, Dai H, Hamel J F, Liu C Z, Yu Y, Liu S L, Lin W C, Guo K M, Jin S J, Xu P, Storey K B, Huan P, Zhang T, Zhou Y, Zhang J Q, Lin C G, Li X N, Xing L L, Huo D, Sun M Z, Wang L, Mercier A, Li F H, Yang H S, Xiang J H, Tyler-Smith C. 2017. The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biology, 15(10):e2003790, https://doi.org/10.1371/journal.pbio.2003790.
Zhao C L, Cui X M, Chen Y P, Liang Q. 2010. Key enzymes of triterpenoid saponin biosynthesis and the induction of their activities and gene expressions in plants. Natural Product Communications, 5(7):1147-1157.
Zhao S J, Wang L, Liu L, Liang Y L, Sun Y, Wu J J. 2014. Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Reports, 33(3):393-400, https://doi.org/10.1007/s00299-013-1538-7.
Zhao Y C, Xue C H, Zhang T T, Wang Y M. 2018. Saponins from sea cucumber and their biological activities. Journal of Agricultural and Food Chemistry, 66(28):7222-7237, https://doi.org/10.1021/acs.jafc.8b01770.
Copyright © Haiyang Xuebao