Cite this paper:
Xinxing ZHANG, Weifeng YANG, Yusheng QIU, Minfang ZHENG. Adsorption of Th and Pa onto particles and the effect of organic compounds in natural seawater[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2209-2219

Adsorption of Th and Pa onto particles and the effect of organic compounds in natural seawater

Xinxing ZHANG1,2, Weifeng YANG1,3, Yusheng QIU1, Minfang ZHENG1
1 College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
2 North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, China;
3 State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
Abstract:
231Pa and 230Th are two crucial isotopes in the ongoing GEOTRACES Project. However, the controversy on 231Pa/230Th proxy pertaining to archiving ocean circulation or recording paleoproductivity, is still unresolved, partly owing to the unclear understanding of fractionation between 231Pa and 230Th during adsorption. In this study, controlled experiments were conducted to examine the adsorption of 234Th and 233Pa onto biogenic particles (SiO2 and CaCO3), authigenic minerals (MnO2 and Fe2O3), and lithogenic minerals (kaolinite, attapulgite, montmorillonite, and aluminum oxyhydroxides), and the role of organic compounds in regulating the adsorption of 234Th and 233Pa in natural seawater was evaluated. The distribution coefficients (Kd, presented as logKd) varied from 3.56 to 6.05 and from 3.27 to 5.82 for 234Th and 233Pa, respectively. Fe2O3 is the strongest sorbent for both 234Th and 233Pa. Most of the particles showed comparable logKd values for either 234Th (~4.8) or 233Pa (~3.9) in the presence of dextran, indicating that the adsorption of Th and Pa is likely controlled by organic coating on particle surfaces. The fractionation factors (FTh/Pa) of SiO2 (3±1) and CaCO3 (33±1) suggest in situ observed preferential scavenging of 230Th to 231Pa in the surface water of low- to mid-latitude regions and the nearly equal removal in the Antarctic Ocean where biogenic silica dominates the particle regime. The FTh/Pa values of the lithogenic and biogenic particles indicate that 230Th is scavenged prior to 231Pa in the particle-scarce ocean interior. The equal scavenging of 230Th and 231Pa at the ocean margins and the ridge crests is dominated by high particle fluxes instead of particle composition control. These results imply that 230Th/231Pa can be used as different proxies in different oceanic settings.
Key words:    thorium|protactinium|paleoproductivity|circulation|particle dynamics   
Received: 2020-08-01   Revised: 2020-11-25
Tools
PDF (1003 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Xinxing ZHANG
Articles by Weifeng YANG
Articles by Yusheng QIU
Articles by Minfang ZHENG
References:
Anderson R F, Ali S, Bradtmiller L I, Nielsen S H H, Fleisher M Q, Anderson B E, Burckle L H. 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323(5920):1443-1448, https://doi.org/10.1126/science.1167441.
Anderson R F, Bacon M P, Brewer P G. 1983a. Removal of 230Th and 231Pa at ocean margins. Earth and Planetary Science Letters, 66:73-90, https://doi.org/10.1016/0012-821X(83)90127-9.
Anderson R F, Bacon M P, Brewer P G. 1983b. Removal of 230Th and 231Pa from the open ocean. Earth and Planetary Science Letters, 62(1):7-23, https://doi.org/10.1016/0012-821X(83)90067-5.
Bacon M P, Huh C A, Fleer A P, Deuser W G. 1985. Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Deep Sea Research Part A. Oceanographic Research Papers, 32(3):273-286, https://doi.org/10.1016/0198-0149(85)90079-2.
Boström K, Kraemer T, Gartner S. 1973. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology, 11(2):123-148, https://doi.org/10.1016/0009-2541(73)90049-1.
Bradtmiller L I, Anderson R F, Fleisher M Q, Burckle L H. 2006. Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present:a test of the silicic acid leakage hypothesis. Paleoceanography, 21(4):PA4201, https://doi.org/10.1029/2006pa001282.
Bradtmiller L I, Anderson R F, Fleisher M Q, Burckle L H. 2009. Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean. Paleoceanography, 24(2):PA2214, https://doi.org/10.1029/2008pa001693.
Brewer P G, Nozaki Y, Spencer D W, Fleer A P. 1980. Sediment trap experiments in the deep North Atlantic:isotopic and elemental fluxes. Journal of Marine Research, 38(4):703-728.
Chase Z, Anderson R F, Fleisher M Q, Kubik P W. 2002. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth and Planetary Science Letters, 204(1-2):215-229, https://doi.org/10.1016/S0012-821X(02)00984-6.
Chuang C Y, Santschi P H, Ho Y F, Conte M H, Guo L D, Schumann D, Ayranov M, Li Y H. 2013. Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Marine Chemistry, 157:131-143, https://doi.org/10.1016/j.marchem.2013.10.002.
Chuang C Y, Santschi P H, Jiang Y L, Ho Y F, Quigg A, Guo L D, Ayranov M, Schumann D. 2014. Important role of biomolecules from diatoms in the scavenging of particle-reactive radionuclides of thorium, protactinium, lead, polonium, and beryllium in the ocean:a case study with Phaeodactylum tricornutum. Limnology and Oceanography, 59(4):1256-1266, https://doi.org/10.4319/lo.2014.59.4.1256.
Chuang C Y, Santschi P H, Wen L S, Guo L D, Xu C, Zhang S J, Jiang Y L, Ho Y F, Schwehr K A, Quigg A, Hung C C, Ayranov M, Schumann D. 2015a. Binding of Th, Pa, Pb, Po and Be radionuclides to marine colloidal macromolecular organic matter. Marine Chemistry, 173:320-329, https://doi.org/10.1016/j.marchem.2014.10.014.
Chuang C Y, Santschi P H, Xu C, Jiang Y L, Ho Y F, Quigg A, Guo L D, Hatcher P G, Ayranov M, Schumann D. 2015b. Molecular level characterization of diatom-associated biopolymers that bind 234Th, 233Pa, 210Pb, and 7Be in seawater:a case study with Phaeodactylum tricornutum. Journal of Geophysical Research:Biogeoscience, 120(9):1858-1869, https://doi.org/10.1002/2015JG002970.
Chust G, Irigoien X, Chave J, Harris R P. 2013. Latitudinal phytoplankton distribution and the neutral theory of biodiversity. Global Ecology and Biogeography, 22(5):531-543, https://doi.org/10.1111/geb.12016.
Costa K M, Hayes C T, Anderson R F, Pavia F J, Bausch A, Deng F F, Dutay J C, Geibert W, Heinze C, Henderson G, Hillaire-Marcel C, Hoffmann S, Jaccard S L, Jacobel A W, Kienast S S, Kipp L, Lerner P, Lippold J, Lund D, Marcantonio F, McGee D, McManus J F, Mekik F, Middleton J L, Missiaen L, Not C, Pichat S, Robinson L F, Rowland G H, Roy-Barman M, Tagliabue A, Torfstein A, Winckler G, Zho Y X. 2020.230Th normalization:new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2):e2019PA003820, https://doi.org/10.1029/2019PA003820.
Costa K M, Jacobel A W, McManus J F, Anderson R F, Winckler G, Thiagarajan N. 2017. Productivity patterns in the equatorial Pacific over the last 30,000 years. Global Biogeochemical Cycles, 31(5):850-865, https://doi.org/10.1002/2016GB005579.
Deng F F, Henderson G M, Castrillejo M, Perez F F, Steinfeldt R. 2018. Evolution of 231Pa and 230Th in overflow waters of the North Atlantic. Biogeoscience, 15(23):7299-7313, https://doi.org/10.5194/bg-15-7299-2018.
Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I. 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 428(6986):929-932, https://doi.org/10.1038/nature02453.
Gdaniec S, Roy-Barman M, Foliot L, Thil F, Dapoigny A, Burckel P, Garcia-Orellana J, Masqué P, Mörth C M, Andersson P S. 2018. Thorium and protactinium isotopes as tracers of marine particle fluxes and deep water circulation in the Mediterranean Sea. Marine Chemistry, 199:12-23, https://doi.org/10.1016/j.marchem.2017.12.002.
Geibert W, Usbeck R. 2004. Adsorption of thorium and protactinium onto different particle types:experimental findings. Geochimica et Cosmochimica Acta, 68(7):1489-1501, https://doi.org/10.1016/j.gca.2003.10.011.
Grenier M, Francois R, Soon M, Rutgers van der Loeff M, Yu X X, Valk O, Not C, Moran S B, Edwards R L, Lu Y B, Lepore K, Allen S E. 2019. Changes in circulation and particle scavenging in the Amerasian Basin of the Arctic Ocean over the last three decades inferred from the water column distribution of geochemical tracers. Journal of Geophysical Research:Oceans, 124(12):9338-9363, https://doi.org/10.1029/2019JC015265.
Guo L D, Chen M, Gueguen C. 2002. Control of Pa/Th ratio by particulate chemical composition in the ocean. Geophysical Research Letters, 29(20):1961, https://doi.org/10.1029/2002GL015666.
Guo L D, Santschi P H, Warnken K W. 1995. Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnology and Oceanography, 40(8):1392-1403, https://doi.org/10.4319/lo.1995.40.8.1392.
Hayes C T, Anderson R F, Fleisher M Q, Huang K F, Robinson L F, Lu Y B, Cheng H, Edwards R L, Moran S B. 2015.230Th and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 116:29-41, https://doi.org/10.1016/j.dsr2.2014.07.007.
Hayes C T, Anderson R F, Jaccard S L, François R, Fleisher M Q, Soon M, Gersonde R. 2013. A new perspective on boundary scavenging in the North Pacific Ocean. Earth and Planetary Science Letters, 369-370:86-97, https://doi.org/10.1016/j.epsl.2013.03.008.
Honeyman B D, Santschi P H. 1989. A Brownian-pumping model for oceanic trace metal scavenging:evidence from Th isotopes. Journal of Marine Research, 47(4):951-992.
Jonkers L, Zahn R, Thomas A, Henderson G, Abouchami W, Francois R, Masqué P, Hall I R, Bickert T. 2015. Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, Neodymium isotope and benthic δ13C record. Earth and Planetary Science Letters, 419:14-21, https://doi.org/10.1016/j.epsl.2015.03.004.
Kretschmer S, Geibert W, Rutgers van der Loeff M M, Schnabel C, Xu S, Mollenhauer G. 2011. Fractionation of 230Th, 231Pa, and 10Be induced by particle size and composition within an opal-rich sediment of the Atlantic Southern Ocean. Geochimica et Cosmochimica Acta, 75(22):6971-6987, https://doi.org/10.1016/j.gca.2011.09.012.
Lao Y, Anderson R F, Broecker W S, Hofmann H J, Wolfli W. 1993. Particulate fluxes of 230Th, 231Pa, and 10Be in the northeastern Pacific Ocean. Geochimica et Cosmochimica Acta, 57(1):205-217, https://doi.org/10.1016/0016-7037(93)90479-G.
Lerner P, Marchal O, Lam P J, Gardner W, Richardson M J, Mishonov A. 2020. A model study of the relative influences of scavenging and circulation on 230Th and 231Pa in the western North Atlantic. Deep Sea Research Part I:Oceanographic Research Papers, 2020, 155:103159, https://doi.org/10.1016/j.dsr.2019.103159.
Li Y H. 2005. Controversy over the relationship between major components of sediment-trap materials and the bulk distribution coefficients of 230Th, 231Pa, and 10Be. Earth and Planetary Science Letters, 233(1-2):1-7, https://doi.org/10.1016/j.epsl.2005.02.023.
Lin P, Chen M, Guo L D. 2015. Effect of natural organic matter on the adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Marine Chemistry, 173:291-301, https://doi.org/10.1016/j.marchem.2014.08.006.
Lin P, Guo L D, Chen M. 2014. Adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Marine Chemistry, 162:50-59, https://doi.org/10.1016/j.marchem.2014.03.004.
Lippold J, Gherardi J M, Luo Y M. 2011. Testing the 231Pa/230Th paleocirculation proxy:a data versus 2D model comparison. Geophysical Research Letters, 38(20):L20603, https://doi.org/10.1029/2011GL049282.
Lippold J, Luo Y M, Francois R, Allen S E, Gherardi J, Pichat S, Hickey B, Schulz H. 2012. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nature Geoscience, 5(11):813-816, https://doi.org/10.1038/NGEO1608.
Luo S D, Ku T L. 1999. Oceanic 231Pa/230Th ratio influenced by particle composition and remineralization. Earth and Planetary Science Letters, 167(3-4):183-195, https://doi.org/10.1016/S0012-821X(99)00035-7.
Luo Y M, Lippold J. 2015. Controls on 231Pa and 230Th in the Arctic Ocean. Geophysical Research Letters, 42(14):5942-5949, https://doi.org/10.1002/2015GL064671.
Ma H, Zeng Z, He J H, Chen L Q, Yin M D, Zeng S, Zeng W Y. 2008. Vertical flux of particulate organic carbon in the central South China Sea estimated from 234Th-238U disequilibria. Chinese Journal of Oceanology and Limnology, 26(4):480-485, https://doi.org/10.1007/s00343-008-0480-y.
Martin J H, Knauer G A, Karl D M, Broenkow W W. 1987. VERTEX:carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 34(2):267-285, https://doi.org/10.1016/0198-0149(87)90086-0.
Moran S B, Shen C C, Edmonds H N, Weinstein S E, Smith J N, Edwards R L. 2002. Dissolved and particulate 231Pa and 230Th in the Atlantic Ocean:constraints on intermediate/deep water age, boundary scavenging, and 231Pa/230Th fractionation. Earth and Planetary Science Letters, 203(3-4):999-1014, https://doi.org/10.1016/S0012-821X(02)00928-7.
Nozaki Y, Nakanishi T. 1985.231Pa and 230Th profiles in the open ocean water column. Deep Sea Research Part A. Oceanographic Research Papers, 32(10):1209-1220, https://doi.org/10.1016/0198-0149(85)90004-4.
Nozaki Y, Yamada M. 1987. Thorium and protactinum isotope distribution in waters of the Japan Sea. Deep Sea Research Part A. Oceanographic Research Papers, 34(8):1417-1430, https://doi.org/10.1016/0198-0149(87)90135-X.
Pavia F, Anderson R, Vivancos S, Fleisher M, Lam P, Lu Y B, Cheng H, Zhang P, Edwards R L. 2018. Intense hydrothermal scavenging of 230Th and 231Pa in the deep Southeast Pacific. Marine Chemistry, 201:212-228, https://doi.org/10.1016/j.marchem.2017.08.003.
Reiller P, Moulin V, Casanova F, Dautel C. 2002. Retention behaviour of humic substances onto mineral surfaces and consequences upon thorium (IV) mobility:case of iron oxides. Applied Geochemistry, 17(12):1551-1562, https://doi.org/10.1016/S0883-2927(02)00045-8.
Rempfer J, Stocker T F, Joos F, Lippold J, Jaccard S L. 2017. New insights into cycling of 231Pa and 230Th in the Atlantic Ocean. Earth and Planetary Science Letters, 468:27-37, https://doi.org/10.1016/j.epsl.2017.03.027.
Roberts K A, Xu C, Hung C C, Conte M H, Santschi P H. 2009. Scavenging and fractionation of thorium vs. protactinium in the ocean, as determined from particle-water partitioning experiments with sediment trap material from the Gulf of Mexico and Sargasso Sea. Earth and Planetary Science Letters, 286(1-2):131-138, https://doi.org/10.1016/j.epsl.2009.06.029.
Shimmield G B, Murray J W, Thomson J, Bacon M P, Anderson R F, Price N B. 1986. The distribution and behaviour of 230Th and 231Pa at an ocean margin, Baja California, Mexico. Geochimica et Cosmochimica Acta, 50(11):2499-2507, https://doi.org/10.1016/0016-7037(86)90032-3.
Shimmield G B, Price N B. 1988. The scavenging of U, 230Th and 231Pa during pulsed hydrothermal activity at 20°S, East Pacific Rise. Geochimica et Cosmochimica Acta, 52(3):669-677, https://doi.org/10.1016/0016-7037(88)90329-8.
Thomas A L, Henderson G M, Robinson L F. 2006. Interpretation of the 231Pa/230Th paleocirculation proxy:new water-column measurements from the southwest Indian Ocean. Earth and Planetary Science Letters, 241(3-4):493-504, https://doi.org/10.1016/j.epsl.2005.11.031.
Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, Bittner L, Dugdale R, Finkel Z, Iudicone D, Jahn O, Guidi L, Lasbleiz M, Leblanc K, Levy M, Pondaven P. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 11:27-37, https://doi.org/10.1038/s41561-017-0028-x.
Walter H J, Geibert W, Rutgers van der Loeff M M, Fischer G, Bathmann U. 2001. Shallow vs. deep-water scavenging of 231Pa and 230Th in radionuclide enriched waters of the Atlantic sector of the Southern Ocean. Deep Sea Research Part I:Oceanographic Research Papers, 48(2):471-493, https://doi.org/10.1016/S0967-0637(00)00046-7.
Walter H J, Rutgers van der Loeff M M, Hoeltzen H. 1997. Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the Polar Front:implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth and Planetary Science Letters, 149(1-4):85-100, https://doi.org/10.1016/S0012-821X(97)00068-X.
Yang H S, Nozaki Y, Sakai H, Masuda A. 1986. The distribution of 230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean. Geochimica et Cosmochimica Acta, 50(1):81-89, https://doi.org/10.1016/0016-7037(86)90050-5.
Yang W F. 2005. Marine Biogeochemistry of 210Po and 210Pb and Their Implications Regarding the Cycling and Export of Particles. Xiamen University, Xiamen, China. p.295-312. (in Chinese with English abstract)
Yang W F, Chen M, Cao J P, Qiu Y S, Zhang R, Ma Q, Tong J L, Yang J H, Yang Z, Lü E. 2009. Influence of particle composition on thorium scavenging in the marginal China Seas. Acta Oceanologica Sinica, 28(2):45-53, https://doi.org/10.3969/j.issn.0253-505X.2009.02.005.
Yang W F, Chen M, Zheng M F, He Z G, Zhang X X, Qiu Y S, Xu W B, Ma L L, Lin Z Y, Hu W J, Zeng J. 2015a. Influence of a decaying cyclonic eddy on biogenic silica and particulate organic carbon in the Tropical South China Sea based on 234Th-238U disequilibrium. PLoS One, 10(8):e0136948, https://doi.org/10.1371/journal.pone.0136948.
Yang W F, Guo L D, Chuang C Y, Santschi P H, Schumann D, Ayranov M. 2015b. Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater. Earth and Planetary Science Letters, 423:193-201, https://doi.org/10.1016/j.epsl.2015.05.007.
Yang W F, Guo L D, Chuang C Y, Schumann D, Ayranov M, Santschi P H. 2013. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochimica et Cosmochimica Acta, 107:47-64, https://doi.org/10.1016/j.gca.2012.12.039.
Yang W F, Zhang X X, Chen M, Qiu Y S. 2016. Unusually low 234Th in a hydrothermal effluent plume over the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 17(9):3815-3824, https://doi.org/10.1002/2016GC006580.
Yu E F, Francois R, Bacon M P. 1996. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379(6567):689-694, https://doi.org/10.1038/379689a0.
Copyright © Haiyang Xuebao