Cite this paper:
Changyou CHEN, Pingping WANG, Long-Fei WU, Tao SONG. Biocompatibility of marine magnetotactic ovoid strain MO-1 for in vivo application[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2107-2115

Biocompatibility of marine magnetotactic ovoid strain MO-1 for in vivo application

Changyou CHEN1,2, Pingping WANG1,2, Long-Fei WU2,3, Tao SONG1,2,4
1 Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China;
3 Aix Marseille University, CNRS, LCB, Marseille F-13402, France;
4 University of the Chinese Academy of Sciences, Beijing 100049, China
Magnetotactic bacteria are capable of biosynthesizing magnetic nanoparticles, also called magnetosomes, and swimming along magnetic field lines. The abilities endow the whole cells of magnetotactic bacteria with such applications as targeted therapy and manipulation of microrobots. We have shown that the intact marine magnetotactic bacteria MO-1 kill efficiently antibiotic-resistant pathogen Staphylococcus aureus in vivo, but the biocompatibility of this marine bacterium is unknown. In this study, the strain MO-1 was chosen to analyze its biocompatibility and potential for biomedicine applications. Results showed that MO-1 cells could be guided at 37 ℃ under an external magnetic field and swim in the blood plasma and urine. They could keep active locomotivity within 40 min in the plasma and urine, although their velocity slowed down. When incubated with human cells, magnetotactic bacteria MO-1 had no obvious effects on cellular viability at low dose, while the cell toxicity increased with the augmentation of the quantity of the MO-1 cells added. In the in-vivo experiments, the median lethal dose of magnetotactic bacteria MO-1 in rats was determined to be 7.9×1010 bacteria/kg. These results provided the foundation for the biocompatibility and safety evaluations of magnetotactic bacteria MO-1 and suggested that they could be basically used in clinical targeted therapy.
Key words:    magnetotactic bacteria|motility|cell interaction|median lethal dose   
Received: 2020-10-29   Revised: 2020-11-29
PDF (1557 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Changyou CHEN
Articles by Pingping WANG
Articles by Long-Fei WU
Articles by Tao SONG
Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. 2011. Chains of magnetosomes extracted from AMB-1
magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 5(8):6279-6296.
Alphandéry E, Guyot F, Chebbi I. 2012. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. International Journal of Pharmaceutics, 434(1-2):444-452.
Alphandéry E, Idbaih A, Adam C, Delattre J Y, Schmitt C, Guyot F, Chebbi I. 2017. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. Journal of Controlled Release, 262:259-272.
Alphandéry E. 2020. Applications of magnetotactic bacteria and magnetosome for cancer treatment:a review emphasizing on practical and mechanistic aspects. Drug Discovery Today, 25(8):1 444-1 452.
Alsaiari S K, Ezzedine A H, Abdallah A M, Sougrat R, Khashab N M. 2016. Magnetotactic bacterial cages as safe and smart gene delivery vehicles. OpenNano, 1:36-45.
Bazylinski D A, Frankel R B. 2004. Magnetosome formation in prokaryotes. Nature Reviews Microbiology, 2(3):217-230.
Benoit M R, Mayer D, Barak Y, Chen I Y, Hu W, Cheng Z, Wang S X, Spielman D M, Gambhir S S, Matin A. 2009. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clinical Cancer Research, 15(16):5170-5177.
Blakemore R P. 1982. Magnetotactic bacteria. Annual Review of Microbiology, 36:217-238.
Chen C F, Wang S H, Li L L, Wang P P, Chen C Y, Sun Z Y, Song T. 2016a. Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI. Biomaterials, 104:352-360.
Chen C Y, Chen C F, Yi Y, Chen L J, Wu L F, Song T. 2014. Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus. Biomedical Microdevices, 16(5):761-770.
Chen C Y, Chen L J, Wang P P, Wu L F, Song T. 2017a. Magnetically-induced elimination of Staphylococcus aureus by magnetotactic bacteria under a swing magnetic field. Nanomedicine, 13(2):363-370.
Chen C Y, Chen L J, Yi Y, Chen C F, Wu L F, Song T. 2016b. Killing of Staphylococcus aureus via magnetic hyperthermia mediated by magnetotactic bacteria. Applied and Environmental Microbiology, 82(7):2219-2226.
Chen L J, Chen C Y, Wang P P, Chen C F, Wu L F, Song T. 2017b. A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip. Journal of Magnetism and Magnetic Materials, 427:90-94.
Faivre D, Schüler D. 2008. Magnetotactic bacteria and magnetosomes. Chemical Reviews, 108(11):4875-4898.
Fdez-Gubieda M L, Alonso J, García-Prieto A, García-Arribas A, Fernández Barquín L, Muela A. 2020. Magnetotactic bacteria for cancer therapy. Journal of Applied Physics, 128:070902.
Felfoul O, Mohammadi M, Taherkhani S, de Lanauze D, Zhong X Y, Loghin D, Essa S, Jancik S, Houle D, Lafleur M, Gaboury L, Tabrizian M, Kaou N, Atkin M, Vuong T, Batist G, Beauchemin N, Radzioch D, Martel S. 2016.
Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 11(11):941-947.
Frankel R B, Bazylinski D A, Johnson M S, Taylor B L. 1997. Magneto-aerotaxis in marine coccoid bacteria. Biophysical Journal, 73(2):994-1000.
Gandia D, Gandarias L, Rodrigo I, Robles-García J, Das R, Garaio E, García J Á, Phan M H, Srikanth H, Orue I, Alonso J, Muela A, Fdez-Gubieda M L. 2019. Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents. Small, 15(41):1902626.
Hamdous Y, Chebbi I, Mandawala C, Le Fèvre R, Guyot F, Seksek O, Alphandéry E. 2017. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. Journal of Nanobiotechnology, 15:74.
Heinke D, Kraupner A, Eberbeck D, Schmidt D, Radon P, Uebe R, Schüler D, Briel A. 2017. MPS and MRI efficacy of magnetosomes from wild-type and mutant bacterial strains. International Journal on Magnetic Particle Imaging, 3(2):1706004.
Hu L L, Zhang F, Wang Z, You X F, Nie L, Wang H X, Song T, Yang W H. 2010. Comparison of the 1H NMR relaxation enhancement produced by bacterial magnetosomes and synthetic iron oxide nanoparticles for potential use as MR molecular probes. IEEE Transactions on Applied Superconductivity, 20(3):822-825.
Lefèvre C T, Bernadac A, Yu-Zhang K, Pradel N, Wu L F. 2009. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environmental Microbiology, 11(7):1646-1657.
Lefèvre C T, Wu L F. 2013. Evolution of the bacterial organelle responsible for magnetotaxis. Trends in Microbiology, 21(10):534-547.
Ma Q F, Chen C Y, Wei S F, Chen C F, Wu L F, Song T. 2012. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicrofluidics, 6(2):024107.
Mandawala C, Chebbi I, Durand-Dubief M, Le Fèvre R, Hamdous Y, Guyot F, Alphandéry E. 2017. Biocompatible and stable magnetosome minerals coated with poly-Llysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors. Journal of Materials Chemistry B, 5(36):7644-7660.
Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P. 2009. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. The International Journal of Robotics Research, 28(4):571-582.
Martel S, Tremblay C C, Ngakeng S, Langlois G. 2006. Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Applied Physics Letters, 89(23):233904.
Matsunaga T, Okamura Y, Tanaka T. 2004. Biotechnological application of nano-scale engineered bacterial magnetic particles. Journal of Materials Chemistry, 14(14):2099-2015.
Murat D, Herisse M, Espinosa L, Bossa A, Alberto F, Wu L F. 2015. Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotactic spirillum. Journal of Bacteriology, 197(20):3275-3282.
Rismani Yazdi S, Nosrati R, Stevens C A, Vogel D, Davies P L, Escobedo C. 2018a. Magnetotaxis enables magnetotactic bacteria to navigate in flow. Small, 14(5):1702982.
Rismani Yazdi S, Nosrati R, Stevens C A, Vogel D, Escobedo C. 2018b. Migration of magnetotactic bacteria in porous media. Biomicrofluidics, 12(1):011101.
Simmons S L, Bazylinski D A, Edwards K J. 2006. Southseeking magnetotactic bacteria in the Northern Hemisphere. Science, 311(5759):371-374.
Stanton M M, Park B W, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S. 2017. Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano, 11(10):9968-9978.
Sun J B, Duan J H, Dai S L, Ren J, Zhang Y D, Tian J S, Li Y. 2007. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells:the magnetic bio-nanoparticles as drug carriers. Cancer Letters, 258(1):109-117.
Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M. 2014. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano, 8(5):5049-5060.
U. S. Food and Drug Administration. 2005. Guidance for industry:estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers,
Wang P P, Chen C F, Chen C Y, Li Y, Pan W D, Song T. 2017. The interaction of bacterial magnetosomes and human liver cancer cells in vitro. Journal of Magnetism and Magnetic Materials, 427:105-110.
Wang P P, Chen C F, Zeng K, Pan W D, Song T. 2014. Magnetic nanoparticles trigger cell proliferation arrest of neuro-2a cells and ROS-mediated endoplasmic reticulum stress response. Journal of Nanoparticle Research, 16(11):2718.
Yang C Y, Chen C F, Ma Q F, Wu L F, Song T. 2012. Dynamic model and motion mechanism of magnetotactic bacteria with two lateral flagellar bundles. Journal of Bionic Engineering, 9(2):200-210.
Zhang C H, Ma W Q, Yang Y L, Wang H M, Dong F T, Huang Z X. 2015. Median effective effect-site concentration of sufentanil for wake-up test in adolescents undergoing surgery:a randomized trial. BMC Anesthesiology, 15:27.
Zhang W J, Wu L F. 2020. Flagella and swimming behavior of marine magnetotactic bacteria. Biomolecules, 10(3):460.
Zhang W J, Zhang S D, Wu L F. 2017. Measurement of freeswimming motility and magnetotactic behavior of Magnetococcus massalia strain MO-1. In:Minamino T, Namba K eds. The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York. p.305-320.
Copyright © Haiyang Xuebao