Cite this paper:
Sha WU, Qing WANG, Xu WANG, Ruixue GUO, Tongwei ZHANG, Yongxin PAN, Feng LI, Ying LI. MamZ protein plays an essential role in magnetosome maturation process of Magnetospirillum gryphiswaldense MSR-1[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2082-2096

MamZ protein plays an essential role in magnetosome maturation process of Magnetospirillum gryphiswaldense MSR-1

Sha WU1, Qing WANG2, Xu WANG2, Ruixue GUO1, Tongwei ZHANG3, Yongxin PAN3, Feng LI1, Ying LI2
1 Engineering Technology Research Center of Ecological Restoration and Comprehensive Utilization of Coal Mining Collapse Area, Anhui Province;Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China;
2 State Key Laboratories for Agro-biotechnology, China Agricultural University, Beijing 100193, China;
3 Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicelluar Organisms, Beijing 100029, China
Abstract:
Based on analysis of gene structure of mamXY operon in Magnetospirillum gryphiswaldense strain MSR-1, we constructed a mamZ deletion mutant strain (△mamZ) and four complemented strains with different mamZ fragment lengths. Various cell phenotypic and physiological parameters were evaluated and compared among the wild-type (WT), mutant, and complemented strains. Cell growth rates were not notably different; however, magnetic response (Cmag) and iron uptake ability were significantly lower in △mamZ. High-resolution transmission electron microscopy (HR-TEM) showed that magnetosomes in △mamZ were small and irregular, and rock magnetic measurements suggested that they contained immature particles. In comparison to WT of MSR-1, intracellular iron content of △mamZ and the complemented strains cultured with 20 μmol/L iron source was similar or slightly higher. The complemented strains were unable to synthesize mature or normal amounts of magnetosomes, apparently because of abnormal expression of the transmembrane domain of MamZ protein. Real-time reverse transcription polymerase chain reaction (RTqPCR) analysis showed that relative transcription levels of mamX and ftsZ-like genes in △mamZ were higher at 18 h than at 12 h, suggesting that MamXY proteins play cooperative functional roles in the magnetosome maturation process. Transcription level of mms6 was significantly upregulated in △mamZ (incubated at 12 h) and the complemented strains (incubated at 12 and 18 h), reflecting possible interaction between MamXY and Mms6 proteins during magnetosome biosynthesis. These findings, taken together, demonstrate the essential role of MamZ in the magnetosome maturation process in MSR-1.
Key words:    Magnetospirillum gryphiswaldense|mamZ|deletion|mamXY operon|magnetosome maturation   
Received: 2020-08-27   Revised: 2020-09-29
Tools
PDF (3179 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Sha WU
Articles by Qing WANG
Articles by Xu WANG
Articles by Ruixue GUO
Articles by Tongwei ZHANG
Articles by Yongxin PAN
Articles by Feng LI
Articles by Ying LI
References:
Amemiya Y, Arakaki A, Staniland S S, Tanaka T, Matsunaga T. 2007. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials, 28(35):5381-5389, https://doi.org/10.1016/j.biomaterials.2007.07.051.
Arakaki A, Masuda F, Amemiya Y, Tanaka T, Matsunaga T. 2010. Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. Journal of Colloid and Interface Science, 343(1):65-70, https://doi.org/10.1016/j.jcis.2009.11.043.
Arakaki A, Webb J, Matsunaga T. 2003. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. Journal of Biological Chemistry, 278(10):8745-8750, https://doi.org/10.1074/jbc.M211729200.
Arakaki A, Yamagishi A, Fukuyo A, Tanaka M, Matsunaga T. 2014. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Molecular Microbiology, 93(3):554-567, https://doi.org/10.1111/mmi.12683.
Balkwill D L, Maratea D, Blakemore R P. 1980. Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 141(3):1399-1408, https://doi.org/10.1128/JB.141.3.1399-1408.1980.
Brokx S J, Rothery R A, Zhang G J, Ng D P, Weiner J H. 2005. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry, 44(30):10339-10348, https://doi.org/10.1021/bi050621a.
Ding Y, Li J H, Liu J N, Yang J, Jiang W, Tian J S, Li Y, Pan Y X, Li J L. 2010. Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 192(4):1097-1105, https://doi.org/10.1128/JB.01292-09.
Drew D, Slotboom D J, Friso G, Reda T, Genevaux P, Rapp M, Meindl-Beinker N M, Lambert W, Lerch M, Daley D O, van Wijk K J, Hirst J, Kunji E, de Gier J W. 2005. A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Science, 14(8):2011-2017, https://doi.org/10.1110/ps.051466205.
Feng S R, Wang L J, Palo P, Liu X P, Mallapragada S K, Nilsen-Hamilton M. 2013. Integrated self-assembly of the Mms6 magnetosome protein to form an iron-responsive structure. International Journal of Molecular Sciences, 14(7):14594-14606, https://doi.org/10.3390/ijms140714594.
Frankel R B, Blakemore R P, Wolfe R S. 1979. Magnetite in freshwater magnetotactic bacteria. Science, 203(4387):1355-1356, https://doi.org/10.1126/science.203.4387.1355.
Gorby Y A, Beveridge T J, Blakemore R P. 1988. Characterization of the bacterial magnetosome membrane. Journal of Bacteriology, 170(2):834-841, https://doi.org/10.1128/JB.170.2.834-841.1988.
Heywood B R, Bazylinski D A, Garratt-Reed A, Mann S, Frankel R B. 1990. Controlled biosynthesis of greigite(Fe3S4) in magnetotactic bacteria. Naturwissenschaften, 77(11):536-538, https://doi.org/10.1007/BF01139266.
Kashyap S, Woehl T J, Liu X P, Mallapragada S K, Prozorov T. 2014. Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. ACS Nano, 8(9):9097-9106, https://doi.org/10.1021/nn502551y.
Keen N T, Tamaki S, Kobayashi D, Trollinger D. 1988. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene, 70(1):191-197, https://doi.org/10.1016/0378-1119(88)90117-5.
Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa E, Plitzko J M, Brachmann A, Wanner G, Müller R, Zhang Y M, Schüler D. 2014. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nature Nanotechnology, 9(3):193-197, https://doi.org/10.1038/nnano.2014.13.
Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, Voigt B, Schweder T, Schüler D. 2011. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense:the mamAB operon is sufficient for magnetite biomineralization. PLoS One, 6(10):e25561, https://doi.org/10.1371/journal.pone.0025561.
Loschi L, Brokx S J, Hill T L, Zhang G, Bertero M G, Lovering A L, Weiner J H, Strynadka N C J. 2004. Structural and biochemical identification of a novel bacterial oxidoreductase. Journal of Biological Chemistry, 279(48):50391-50400, https://doi.org/10.1074/jbc.M408876200.
Madej M G, Dang S Y, Yan N E, Kaback H R. 2013. Evolutionary mix-and-match with MFS transporters. Proceedings of the National Academy of Sciences of the United States of America, 110(15):5870-5874, htts://doi.org/10.1073/pnas.1303538110.
Madej M G, Kaback H R. 2013. Evolutionary mix-and-match with MFS transporters Ⅱ. Proceedings of the National Academy of Sciences of the United States of America, 110(50):e4831-e4838, https://doi.org/10.1073/pnas. 1319754110.
Marger M D, Saier Jr M H. 1993. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences, 18(1):13-20, https://doi.org/10.1016/0968-0004(93)90081-W.
Murat D, Quinlan A, Vali H, Komeili A. 2010. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proceedings of the National Academy of Sciences of the United States of America, 107(12):5593-5598, https://doi.org/10.1073/pnas.0914439107.
Nguyen H V, Suzuki E, Oestreicher Z, Minamide H, Endoh H, Fukumori Y, Taoka A. 2016. A protein-protein interaction in magnetosomes:TPR protein MamA interacts with an Mms6 protein. Biochemistry and Biophysics Reports, 7:39-44, https://doi.org/10.1016/j.bbrep.2016.05.010.
Nudelman H, Zarivach R. 2014. Structure prediction of magnetosome-associated proteins. Frontiers in Microbiology, 5:9, https://doi.org/10.3389/fmicb.2014.00009.
Pao S S, Paulsen I T, Saier Jr M H. 1998. Major facilitator superfamily. Microbiology and Molecular Biology Reviews, 62(1):1-34, https://doi.org/10.1128/MMBR.62.1.1-34.1998.
Peigneux A, Jabalera Y, Vivas M A F, Casares S, Azuaga A I, Jimenez-Lopez C. 2019. Tuning properties of biomimetic magnetic nanoparticles by combining magnetosome associated proteins. Scientific Reports, 9:8804, https://doi.org/10.1038/s41598-019-45219-7.
Raschdorf O, Müller F D, Pósfai M, Plitzko J M, Schüler D. 2013. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Molecular Microbiology, 89(5):872-886, https://doi.org/10.1111/mmi.12317.
Rawlings A E, Liravi P, Corbett S, Holehouse A S, Staniland S S. 2020. Investigating the ferric ion binding site of magnetite biomineralisation protein Mms6. PLoS One, 15(2):e0228708, https://doi.org/10.1371/journal.pone. 0228708.
Reddy V S, Shlykov M A, Castillo R, Sun E I, Saier Jr M H. 2012. The major facilitator superfamily (MFS) revisited. FEBS Journal, 279(11):2022-2035, https://doi.org/10.1111/j.1742-4658.2012.08588.x.
Richter M, Kube M, Bazylinski D A, Lombardot T, Glöckner F O, Reinhardt R, Schüler D. 2007. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. Journal of Bacteriology, 189(13):4899-4910, https://doi.org/10.1128/JB.00119-07.
Rong C B, Huang Y J, Zhang W J, Jiang W, Li Y, Li J L. 2008. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Research in Microbiology, 159(7-8):530-536, https://doi.org/10.1016/j.resmic.2008.06.005.
Sakaguchi T, Burgess J G, Matsunaga T. 1993. Magnetite formation by a sulphate-reducing bacterium. Nature, 365(6441):47-49, https://doi.org/10.1038/365047a0.
Schüler D. 2004. Molecular analysis of a subcellular compartment:the magnetosome membrane in Magnetospirillum gryphiswaldense. Archives of Microbiology, 181(1):1-7, https://doi.org/10.1007/s00203-003-0631-7.
Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in Gram negative bacteria. Nature Biotechnology, 1(9):784-791, https://doi.org/10.1038/nbt1183-784.
Siponen M I, Adryanczyk G, Ginet N, Arnoux P, Pignol D. 2012. Magnetochrome:a c-type cytochrome domain specific to magnetotatic bacteria. Biochemical Society Transactions, 40(6):1319-1323, https://doi.org/10.1042/BST20120104.
Staniland S S, Rawlings A E. 2016. Crystallizing the function of the magnetosome membrane mineralization protein Mms6. Biochemical Society Transactions, 44(3):883-890, https://doi.org/10.1042/BST20160057.
Tanaka M, Arakaki A, Matsunaga T. 2010. Identification and functional characterization of liposome tubulation protein from magnetotactic bacteria. Molecular Microbiology, 76(2):480-488, https://doi.org/10.1111/j.1365-2958.2010.07117.x.
Tanaka M, Mazuyama E, Arakaki A, Matsunaga T. 2011. Mms6 protein regulates crystal morphology during nanosized magnetite biomineralization in vivo. Journal of Biological Chemistry, 286(8):6386-6392, https://doi.org/10.1074/jbc.M110.183434.
von Rozycki T, Yen M R, Lende E E, Saier Jr M H. 2004. The YedZ family:possible heme binding proteins that can be fused to transporters and electron carriers. Journal of Molecular Microbiology and Biotechnology, 8(3):129-140, https://doi.org/10.1159/000085786.
Wang Q, Liu J X, Zhang W J, Zhang T W, Yang J, Li Y. 2013. Expression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. FEMS Microbiology Letters, 347(2):163-172, https://doi.org/10.1111/1574-6968.12234.
Wang Q, Wang M W, Wang X, Guan G H, Li Y, Peng Y L, Li J L. 2015a. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation. Applied and Environmental Microbiology, 81(23):8044-8053, https://doi.org/10.1128/AEM.02585-15.
Wang Q, Wu S, Li X Y, Zhang T W, Yang J, Wang X, Li F, Li Y, Peng Y L, Li J L. 2019. Work patterns of MamXY proteins during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. Applied and Environmental Microbiology, 85(2):e02394-18, https://doi.org/10.1128/AEM.02394-18.
Wang X, Wang Q, Zhang W J, Wang Y J, Li L, Wen T, Zhang T W, Zhang Y, Xu J, Hu J Y, Li S Q, Liu L Z, Liu J X, Jiang W, Tian J S, Li Y, Schüler D, Wang L, Li J L. 2014. Complete genome sequence of Magnetospirillum gryphiswaldense MSR-1. Genome Announcements, 2(2):e00171-14, https://doi.org/10.1128/genomeA.00171-14.
Wang Y Z, Lin W, Li J H, Zhang T W, Li Y, Tian J S, Gu L X, Heyden Y V, Pan Y X. 2015b. Characterizing and optimizing magnetosome production of Magnetospirillum sp. XM-1 isolated from Xi'an City Moat, China. FEMS Microbiology Letters, 362(21):fnv167, https://doi.org/10.1093/femsle/fnv167.
Yan N E. 2013. Structural advances for the major facilitator superfamily (MFS) transporters. Trends in Biochemical Sciences, 38(3):151-159, https://doi.org/10.1016/j.tibs. 2013.01.003.
Yang J, Li S Q, Huang X L, Li J H, Li L, Pan Y X, Li Y. 2013. MamX encoded by the mamXY operon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1. BMC Microbiology, 13:203, https://doi.org/10.1186/1471-2180-13-203.
Zhang C, Meng X, Li N X, Wang W, Sun Y, Jiang W, Guan G H, Li Y. 2013. Two bifunctional enzymes with ferric reduction ability play complementary roles during magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1. Journal of Bacteriology, 195(4):876-885, https://doi.org/10.1128/JB.01750-12.
Copyright © Haiyang Xuebao