Cite this paper:
Yingjie LI. Redox control of magnetosome biomineralization[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2070-2081

Redox control of magnetosome biomineralization

Yingjie LI
State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
Abstract:
Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments, which is achieved by their unique organelles, the magnetosomes. Magnetosomes contain nanometer-sized crystal particles of magnetic iron minerals, which are only synthesized in lowoxygen environments. Although the mechanism of aerobic repression for magnetosome biomineralization has not yet fully understood, a series of studies have verified that redox modulation is pivotal for magnetosome formation. In this review, these advances in redox modulation for magnetosome biosynthesis are highlighted, mainly including respiration pathway enzymes, specific magnetosome-associated redox proteins, and oxygen- or nitrate-sensing regulators. Furthermore, their relationship during magnetosome biomineralization is discussed to give insight into redox control and biomineralization and inspire potential solutions for the application of respiration pathways to improve the yields of magnetosome.
Key words:    magnetotactic bacteria|magnetosome|biomineralization|respiration|redox control   
Received: 2020-11-03   Revised: 2020-12-15
Tools
PDF (1823 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Yingjie LI
References:
Adamczack J, Hoffmann M, Papke U, Haufschildt K, Nicke T, Bröring M, Sezer M, Weimar R, Kuhlmann U, Hildebrandt P, Layer G. 2014. NirN protein from Pseudomonas aeruginosa is a novel electron-bifurcating dehydrogenase catalyzing the last step of heme d1 biosynthesis. The Journal of Biological Chemistry, 289(44):30753-30762, https://doi.org/10.1074/jbc.M114.603886.
Bazylinski D A, Blakemore R P. 1983. Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Applied and Environmental Microbiology, 46(5):1118-1124, https://doi.org/10.1128/AEM.46.5.1118-1124.1983.
Bazylinski D A, Williams T J. 2006. Ecophysiology of magnetotactic bacteria. In:Schüler D ed. Magnetoreception and Magnetosomes in Bacteria. Springer, Heidelberg. p.37-75, https://doi.org/10.1007/7171_038.
Blakemore R P, Short K A, Bazylinski D A, Rosenblatt C, Frankel R B. 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiology Journal, 4(1):53-71, https://doi.org/10.1080/01490458509385920.
Bueno E, Mesa S, Bedmar E J, Richardson D J, Delgado M J. 2012. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions:redox control. Antioxidants & Redox Signaling, 16(8):819-852, https://doi.org/10.1089/ars.2011.4051.
Chandrangsu P, Rensing C, Helmann J D. 2017. Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology, 15(6):338-350, https://doi.org/10.1038/nrmicro.2017.15.
Faivre D, Agrinier P, Menguy N, Zuddas P, Pachana K, Gloter A, Laval J Y, Guyot F. 2004. Mineralogical and isotopic properties of inorganic nanocrystalline magnetites. Geochimica et Cosmochimica Acta, 68(21):4395-4403, https://doi.org/10.1016/j.gca.2004.03.016.
Faivre D, Böttger L H, Matzanke B F, Schüler D. 2007. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membranebound ferritin and an iron(Ⅱ) species. Angewandte Chemie International Edition, 46(44):8495-8499, https://doi.org/10.1002/anie.200700927.
Faivre D, Schüler D. 2008. Magnetotactic bacteria and magnetosomes. Chemical Reviews, 108(11):4875-4898, https://doi.org/10.1021/cr078258w.
Grünberg K, Müller E C, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D. 2004. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 70(2):1040-1050, https://doi.org/10.1128/aem.70.2.1040-1050.2004.
Hamada M, Toyofuku M, Miyano T, Nomura N. 2014. cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 196(22):3881-3889, https://doi.org/10.1128/JB.01978-14.
Jogler C, Schüler D. 2009. Genomics, genetics, and cell biology of magnetosome formation. Annual Review of Microbiology, 63:501-521, https://doi.org/10.1146/annurev.micro.62.081307.162908.
Jones S R, Wilson T D, Brown M E, Rahn-Lee L, Yu Y, Fredriksen L L, Ozyamak E, Komeili A, Chang M C Y. 2015. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum. Proceedings of the National Academy of Sciences of the United States of America, 112(13):3904-3909, https://doi.org/10.1073/pnas.1417614112.
Klünemann T, Preuß A, Adamczack J, Rosa L F M, Harnisch F, Layer G, Blankenfeldt W. 2019. Crystal structure of dihydro-heme d1 dehydrogenase NirN from Pseudomonas aeruginosa reveals amino acid residues essential for catalysis. Journal of Molecular Biology, 431(17):3246-3260, https://doi.org/10.1016/j.jmb.2019.05.046.
Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa É, Plitzko J M, Brachmann A, Wanner G, Müller R, Zhang Y M, Schüler D. 2014. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nature Nanotechnology, 9(3):193-197, https://doi.org/10.1038/nnano.2014.13.
Li Y J, Bali S, Borg S, Schüler D. 2013. Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly. Journal of Bacteriology, 195(18):4297-4309, https://doi.org/10.1128/JB.00686-13.
Li Y J, Katzmann E, Borg S, Schüler D. 2012. The periplasmic nitrate reductase Nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 194(18):4847-4856, https://doi.org/10.1128/JB.00903-12.
Li Y J, Raschdorf O, Silva K T, Schüler D. 2014a. The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 196(14):2552-2562, https://doi.org/10.1128/JB.01652-14.
Li Y J, Sabaty M, Borg S, Silva K T, Pignol D, Schüler D. 2014b. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiology, 14:153, https://doi.org/10.1186/1471-2180-14-153.
Lohße A, Borg S, Raschdorf O, Kolinko I, Tompa É, Pósfai M, Faivre D, Baumgartner J, Schüler D. 2014. Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 196(14):2658-2669, https://doi.org/10.1128/JB.01716-14.
Lohße A, Kolinko I, Raschdorf O, Uebe R, Borg S, Brachmann A, Plitzko J M, Müller R, Zhang Y M, Schüler D, Vieille C. 2016. Overproduction of magnetosomes by genomic amplification of biosynthesis-related gene clusters in a magnetotactic bacterium. Applied and Environmental Microbiology, 82(10):3032-3041, https://doi.org/10.1128/AEM.03860-15.
Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, Voigt B, Schweder T, Schüler D. 2011. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense:the mamAB operon is sufficient for magnetite biomineralization. PLoS One, 6(10):e25561, https://doi.org/10.1371/journal.pone.0025561.
Lower B H, Bazylinski D A. 2013. The bacterial magnetosome:a unique prokaryotic organelle. Journal of Molecular Microbiology and Biotechnology, 23(1-2):63-80, https://doi.org/10.1159/000346543.
Mandernack K W, Bazylinski D A, Shanks Ⅲ W C, Bullen T W. 1999. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science, 285(5435):1892-1896, https://doi.org/10.1126/science.285.5435.1892.
Mann S, Sparks N H C, Board R G. 1990. Magnetotactic bacteria:microbiology, biomineralization, palaeomagnetism and biotechnology. Advances in Microbial Physiology, 31:125-181, https://doi.org/10.1016/S0065-2911(08)60121-6.
Matsunaga T, Sakaguchi T, Tadakoro F. 1991. Magnetite formation by a magnetic bacterium capable of growing aerobically. Applied Microbiology and Biotechnology, 35(5):651-655, https://doi.org/10.1007/BF00169632.
Matsunaga T, Tsujimura N. 1993. Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically. Applied Microbiology and Biotechnology, 39(3):368-371, https://doi.org/10.1007/BF00192094.
Mayfield J A, Dehner C A, DuBois J L. 2011. Recent advances in bacterial heme protein biochemistry. Current Opinion in Chemical Biology, 15(2):260-266, https://doi.org/10.1016/j.cbpa.2011.02.002.
McCausland H C, Komeili A. 2020. Magnetic genes:studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genetics, 16(2):e1008499, https://doi.org/10.1371/journal.pgen.1008499.
Müller F D, Raschdorf O, Nudelman H, Messerer M, Katzmann E, Plitzko J M, Zarivach R, Schüler D. 2014. The FtsZLike protein FtsZm of Magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. Journal of Bacteriology, 196(3):650-659, https://doi.org/10.1128/JB.00804-13.
Murat D, Quinlan A, Vali H, Komeili A. 2010. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proceedings of the National Academy of Sciences of the United States of America, 107(12):5593-5598, https://doi.org/10.1073/pnas.0914439107.
Nicke T, Schnitzer T, Münch K, Adamczack J, Haufschildt K, Buchmeier S, Kucklick M, Felgenträger U, Jänsch L, Riedel K, Layer G. 2013. Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF. Bioscience Reports, 33(3):e00048, https://doi.org/10.1042/BSR20130043.
O'Brien W, Paoletti L C, Blakemore R P. 1987. Spectral analysis of cytochromes in Aquaspirillum magnetotacticum. Current Microbiology, 15(3):121-127, https://doi.org/10.1007/BF01577258.
Qi L, Li J, Zhang W J, Liu J N, Rong C B, Li Y, Wu L F. 2012. Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism. PLoS One, 7(1):e29572, https://doi.org/10.1371/journal.pone.0029572.
Quinlan A, Murat D, Vali H, Komeili A. 2011. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Molecular Microbiology, 80(4):1075-1087, https://doi.org/10.1111/j.1365-2958.2011.07631.x.
Rahn-Lee L, Komeili A. 2013. The magnetosome model:insights into the mechanisms of bacterial biomineralization. Frontiers in Microbiology, 4:352, https://doi.org/10.3389/fmicb.2013.00352.
Raschdorf O, Forstner Y, Kolinko I, Uebe R, Plitzko J M, Schüler D. 2016. Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLoS Genetics, 12(6):e1006101, https://doi.org/10.1371/journal.pgen. 1006101.
Raschdorf O, Müller F D, Pósfai M, Plitzko J M, Schüler D. 2013. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Molecular Microbiology, 89(5):872-886, https://doi.org/10.1111/mmi.12317.
Sakaguchi H, Hagiwara H, Fukumori Y, Tamaura Y, Funaki M, Hirose S. 1993. Oxygen concentration-dependent induction of a 140-kDa protein in magnetic bacterium Magnetospirillum magnetotacticum MS-1. FEMS Microbiology Letters, 107(2-3):169-173, https://doi.org/10.1111/j.1574-6968.1993.tb06025.x.
Schübbe S, Wurdemann C, Peplies J, Heyen U, Wawer C, Glöckner F O, Schüler D. 2006. Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 72(9):5757-5765, https://doi.org/10.1128/AEM.00201-06.
Schüler D. 2008. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiology Reviews, 32(4):654-672, https://doi.org/10.1111/j.1574-6976.2008.00116.x.
Short K A, Blakemore R P. 1989. Periplasmic superoxide dismutases in Aquaspirillum magnetotacticum. Archives of Microbiology, 152(4):342-346, https://doi.org/10.1007/BF00425171.
Siponen M I, Adryanczyk G, Ginet N, Arnoux P, Pignol D. 2012. Magnetochrome:a c-type cytochrome domain specific to magnetotatic bacteria. Biochemical Society Transactions, 40(6):1319-1323, https://doi.org/10.1042/BST20120104.
Siponen M I, Legrand P, Widdrat M, Jones S R, Zhang W J, Chang M C Y, Faivre D, Arnoux P, Pignol D. 2013. Structural insight into magnetochrome-mediated magnetite biomineralization. Nature, 502(7473):681-684, https://doi.org/10.1038/nature12573.
Tamegai H, Fukumori Y. 1994. Purification, and some molecular and enzymatic features of a novel ccb-type cytochrome c oxidase from a microaerobic denitrifier, Magnetospirillum magnetotacticum. FEBS Letters, 347(1):22-26, https://doi.org/10.1016/0014-5793(94)00500-1.
Tamegai H, Yamanaka T, Fukumori Y. 1993. Purification and properties of a ‘cytochrome a1’-like hemoprotein from a magnetotactic bacterium, Aquaspirillum magnetotacticum. Biochimica et Biophysica Acta (BBA) - General Subjects, 1158(3):237-243, https://doi.org/10.1016/0304-4165(93)90020-9.
Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko J M, Bramkamp M, Schüler D, Müller F D. 2019. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nature Microbiology, 4(11):1978-1989, https://doi.org/10.1038/s41564-019-0512-8.
Torres M J, Avila S, Bedmar E J, Delgado M J. 2018. Overexpression of the periplasmic nitrate reductase supports anaerobic growth by Ensifer meliloti. FEMS Microbiology Letters, 365(7):fny041, https://doi.org/10.1093/femsle/fny041.
Uebe R, Schüler D. 2016. Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews Microbiology, 14(10):621-637, https://doi.org/10.1038/nrmicro.2016.99.
Uebe R, Voigt B, Schweder T, Albrecht D, Katzmann E, Lang C, Böttger L, Matzanke B, Schüler D. 2010. Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. Journal of Bacteriology, 192(16):4192-4204, https://doi.org/10.1128/JB.00319-10.
Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D. 2005. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. Journal of Bacteriology, 187(21):7176-7184, https://doi.org/10.1128/JB.187.21.7176-7184.2005. Unden G, Becker S, Bongaerts J, Holighaus G, Schirawski J, Six S. 1995. O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Archives of Microbiology, 164(2):81-90, https://doi.org/10.1007/BF02525312.
Wang K, Ge X, Bo T, Chen Q, Chen G, Liu W. 2011. Interruption of the denitrification pathway influences cell growth and magnetosome formation in Magnetospirillum magneticum AMB-1. Letters in Applied Microbiology, 53(1):55-62, https://doi.org/10.1111/j.1472-765X.2011.03063.x.
Wang Q, Wang M W, Wang X, Guan G H, Li Y, Peng Y L, Li J L. 2015. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation. Applied and Environmental Microbiology, 81(23):8044-8053, https://doi.org/10.1128/AEM.02585-15.
Wang Q, Wu S, Li X Y, Zhang T W, Yang J, Wang X, Li F, Li Y, Peng Y L, Li J L. 2019a. Work patterns of MamXY proteins during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. Applied and Environmental Microbiology, 85(2):e02394-18, https://doi.org/10.1128/AEM.02394-18.
Wang X, Wang Q, Zhang Y, Wang Y J, Zhou Y, Zhang W J, Wen T, Li L, Zuo M Q, Zhang Z D, Tian J S, Jiang W, Li Y, Wang L, Li J L. 2016. Transcriptome analysis reveals physiological characteristics required for magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. Environmental Microbiology Reports, 8(3):371-381, https://doi.org/10.1111/1758-2229.12395.
Wang X, Zheng H L, Wang Q, Jiang W, Wen Y, Tian J S, Sun J B, Li Y, Li J L. 2019b. Novel protein Mg2046 regulates magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1 by modulating a proper redox status. Frontiers in Microbiology, 10:1478, https://doi.org/10.3389/fmicb.2019.01478.
Wen T, Guo F F, Zhang Y P, Tian J S, Li Y, Li J L, Jiang W. 2016. A novel role for Crp in controlling magnetosome biosynthesis in Magnetospirillum gryphiswaldense MSR-1. Scientific Reports, 6:21156, https://doi.org/10.1038/srep21156.
Yamazaki T, Oyanagi H, Fujiwara T, Fukumori Y. 1995. Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum. European Journal of Biochemistry, 233(2):665-671, https://doi.org/10.1111/j.1432-1033.1995.665_2.x.
Yang C D, Takeyama H, Tanaka T, Matsunaga T. 2001. Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme and Microbial Technology, 29(1):13-19, https://doi.org/10.1016/S0141-0229(01)00343-X.
Yang J, Li S Q, Huang X L, Li J H, Li L, Pan Y X, Li Y. 2013. MamX encoded by the mamXY operon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1. BMC Microbiology, 13:203, https://doi.org/10.1186/1471-2180-13-203.
Zhang Y P, Wen T, Guo F F, Geng Y Y, Liu J Q, Peng T, Guan G H, Tian J S, Li Y, Li J L, Ju J, Jiang W. 2017. The disruption of an OxyR-Like protein impairs intracellular magnetite biomineralization in Magnetospirillum gryphiswaldense MSR-1. Frontiers in Microbiology, 8:208, https://doi.org/10.3389/fmicb.2017.00208.
Copyright © Haiyang Xuebao