Cite this paper:
Shao'e SUN, Zhongli SHA, Yanrong WANG. Mitochondrial phylogenomics reveal the origin and adaptive evolution of the deep-sea caridean shrimps (Decapoda: Caridea)[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1948-1960

Mitochondrial phylogenomics reveal the origin and adaptive evolution of the deep-sea caridean shrimps (Decapoda: Caridea)

Shao'e SUN1,3, Zhongli SHA1,2,3,4, Yanrong WANG1,3
1 Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
The deep-sea is considered as the most extensive ecosystem on the Earth. It is meaningful for elucidating the life origins by exploring the origin and adaptive genetic mechanisms of the large deepsea organisms. Caridean shrimps have colonized and successfully adapted to deep-sea environments. They provide an ideal model to analyze the origin and adaptive evolution of modern deep-sea fauna. Here, we conducted the phylogenetic analyses of mitochondrial genomes (mitogenomes) from carideans, including 11 newly sequences reported in this investigation to explore the habitat origins, divergence times, and adaptive evolution of deep-sea (seamounts and hydrothermal vents) caridean shrimps. The results showed that the species of deep-sea Caridea formed a monophyletic group. Phylogenetic analysis supported that the deepsea caridean shrimps may originated from shallow sea. The hydrothermal vents alvinocaridid shrimps and Lebbeus shinkaiae from Thoridae underwent a second range expansion from seamounts to vent ecosystems. Estimates of divergence time showed that the caridean shrimps invaded into deep-sea at 147.75 Ma. The divergence of most of the modern seamount and hydrothermal vent species are in the late Cretaceous/early Tertiary. This may associate with the geological events of the Western Pacific, the climate change, and the global deep-water anoxic/dysoxic events during this period. Twenty-two potentially important adaptive residues were detected in the deep-sea shrimp lineage, which were located in atp6, atp8, cox1, cox3, cytb, nad2, nad4l, and nad5. This investigation adds our understanding of the evolutionary history of deep-sea caridean shrimps, and provides insights into the mitochondrial genetic basis of deep-sea adaptation in this group.
Key words:    hydrothermal vents|seamounts|Caridea|mitochondrial genome|phylogenetic analysis|evolutionary history   
Received: 2020-07-15   Revised: 2020-10-26
Tools
PDF (718 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Shao'e SUN
Articles by Zhongli SHA
Articles by Yanrong WANG
References:
Allen J A. 1979. The adaptations and radiation of deep-sea bivalves. Sarsia, 64(1-2):19-27, https://doi.org/10.1080/00364827.1979.10411357.
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler F P. 2013. MITOS:improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2):313-319, https://doi.org/10.1016/j.ympev.2012.08.023.
Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8):1 767-1 780, https://doi.org/10.1093/nar/27.8.1767.
Cardoso I A. 2010. First record of family Bathypalaemonellidae(Caridea:Decapoda) on Brazilian deep-sea coral reefs. Marine Biodiversity Records, 3:e108, https://doi.org/10.1017/S1755267210000941.
Cardoso I, Young P. 2005. Deep-sea oplophoridae (Crustacea Caridea) from the southwestern Brazil. Zootaxa, 1031(1):1-76, https://doi.org/10.11646/zootaxa.1031.1.1.
Castellana S, Vicario S, Saccone C. 2011. Evolutionary patterns of the mitochondrial genome in metazoa:exploring the role of mutation and selection in mitochondrial protein-coding genes. Genome Biology and Evolution, 3:1 067-1 079, https://doi.org/10.1093/gbe/evr040.
Chan T Y, Ho K C, Li C P, Chu K H. 2009. Origin and diversification of the clawed lobster genus Metanephrops(Crustacea:Decapoda:Nephropidae). Molecular Phylogenetics and Evolution, 50(3):411-422, https://doi.org/10.1016/j.ympev.2008.11.020.
Chan T Y, Komai T. 2017. A new shrimp species of the genus Lebbeus White, 1847 (Crustacea:Deacpoda:Caridea:Thoridae) from a deep-sea cold seep site off Southwestern Taiwan. Zootaxa, 4238(3):426-432, https://doi.org/10.11646/zootaxa.4238.3.9.
Chevaldonné P, Jollivet D, Desbruyeres D, Lutz R A, Vrijenhoek R C. 2002. Sister-species of eastern Pacific hydrothermal vent worms (Ampharetidae, Alvinellidae, Vestimentifera) provide new mitochondrial COI clock calibration. Cahiers de Biologie Marine, 43:367-370.
Cooper C E, Brown G C. 2008. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide:chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes, 40(5):533-539, https://doi.org/10.1007/s10863-008-9166-6.
Corinaldesi C. 2015. New perspectives in benthic deep-sea microbial ecology. Frontiers in Marine Science, 2:17, https://doi.org/10.3389/fmars.2015.00017.
Curole J P, Kocher T D. 1999. Mitogenomics:digging deeper with complete mitochondrial genomes. Trends in Ecology & Evolution, 14(10):394-398, https://doi.org/10.1016/S0169-5347(99)01660-2.
da Silva-Castiglioni D, Oliveira G T, Buckup L. 2010. Metabolic responses of Parastacus defossus and Parastacus brasiliensis (Crustacea, Decapoda, Parastacidae) to hypoxia. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 156(4):436-444, https://doi.org/10.1016/j.cbpa.2010.03.025.
da Silva-Castiglioni D, Oliveira G T, Buckup L. 2011. Metabolic responses in two species of crayfish (Parastacus defossus and Parastacus brasiliensis) to post-hypoxia recovery. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 159(3):332-338, https://doi.org/10.1016/j.cbpa.2011.03.030.
Danovaro R, Snelgrove P V R, Tyler P. 2014. Challenging the paradigms of deep-sea ecology. Trends in Ecology & Evolution, 29(8):465-475, https://doi.org/10.1016/j.tree.2014.06.002.
Das J. 2006. The role of mitochondrial respiration in physiological and evolutionary adaptation. BioEssays, 28(9):890-901, https://doi.org/10.1002/bies.20463.
Drummond A J, Suchard M A, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8):1 969-1 973, https://doi.org/10.1093/molbev/mss075.
Felsenstein J. 1981. Evolutionary trees from DNA sequences:a maximum likelihood approach. Journal of Molecular Evolution, 17(6):368-376, https://doi.org/10.1007/BF01734359.
Ferguson-Miller S, Hiser C, Liu J. 2012. Gating and regulation of the cytochrome c oxidase proton pump. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(4):489-494, https://doi.org/10.1016/j.bbabio.2011.11.018.
Fisher C R, Takai K, Le Bris N. 2007. Hydrothermal vent ecosystems. Oceanography, 20(1):14-23, https://doi.org/10.5670/oceanog.2007.75.
Fonseca R R D, Johnson W E, O'Brien S J, Ramos M J, Antunes A. 2008. The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics, 9:119, https://doi.org/10.1186/1471-2164-9-119.
Guo H Y, Yang H, Tao Y T, Tang D, Wu Q, Wang Z F, Tang B P. 2018. Mitochondrial OXPHOS genes provides insights into genetics basis of hypoxia adaptation in anchialine cave shrimps. Genes & Genomics, 40(11):1 169-1 180, https://doi.org/10.1007/s13258-018-0674-4.
Hayward B W. 2001. Global deep-sea extinctions during the Pleistocene ice ages. Geology, 29(7):599-602, https://doi.org/10.1130/0091-7613(2001)029<0599:GDSEDT>2.0.CO;2.
Hernández-Ávila I, Cambon-Bonavita M A, Pradillon F. 2015. Morphology of first zoeal stage of four genera of alvinocaridid shrimps from hydrothermal vents and cold seeps:implications for ecology, larval biology and phylogeny. PLoS One, 10(12):e0144657, https://doi.org/10.1371/journal.pone.0144657.
Herrera S, Watanabe H, Shank T M. 2015. Evolutionary and biogeographical patterns of barnacles from deep-sea hydrothermal vents. Molecular Ecology, 24(3):673-689, https://doi.org/10.1111/mec.13054.
Herring P J. 2002. The Biology of the Deep Ocean. Oxford University Press, Oxford, UK.
Huelsenbeck J P, Ronquist F. 2001. Mrbayes:Bayesian inference of phylogenetic trees. Bioinformatics, 17(8):754-755, https://doi.org/10.1093/bioinformatics/17.8.754.
Hui M, Cheng J, Sha Z L. 2018. Adaptation to the deep-sea hydrothermal vents and cold seeps:insights from the transcriptomes of Alvinocaris longirostris in both environments. Deep Sea Research Part I:Oceanographic Research Papers, 135:23-33, https://doi.org/10.1016/j.dsr.2018.03.014.
Jablonski D, Bottjer D J. 1990. Onshore-offshore trends in marine invertebrate evolution. In:Ross R M, Allmon W D eds. Causes of Evolution. University of Chicago Press, Chicago. p.21-75.
Jacobs D K, Lindberg D R. 1998. Oxygen and evolutionary patterns in the sea:onshore/offshore trends and recent recruitment of deep-sea faunas. Proceedings of the National Academy of Sciences of the United States of America, 95(16):9 396-9 401, https://doi.org/10.1073/pnas.95.16.9396.
Ji Y K, Wang A, Lu X L, Song D H, Jin Y H, Lu J J, Sun H Y. 2014. Mitochondrial genomes of two brachyuran crabs(Crustacea:Decapoda) and phylogenetic analysis. Journal of Crustacean Biology, 34(4):494-503, https://doi.org/10.1163/1937240X-00002252.
Katayama K, Ookura M, Yamasaki H, Shigeshima K, Fujimoto T, Fujiwara T. 2012. Effect of normal air pressure low oxygen concentration environments on resting metabolism. The Journal of Japan Academy of Health Sciences, 14(4):199-204, https://doi.org/10.24531/jhsaiih.14.4_199.
Katoh K, Kuma K I, Toh H, Miyata T. 2005. MAFFT version 5:improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2):511-518, https://doi.org/10.1093/nar/gki198.
Ki J S, Dahms H U, Hwang J S, Lee J S. 2009. The complete mitogenome of the hydrothermal vent crab Xenograpsus testudinatus (Decapoda, Brachyura) and comparison with brachyuran crabs. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 4(4):290-299, https://doi.org/10.1016/j.cbd.2009.07.002.
Komai T, Chang S C, Chan T Y. 2019. A new deep-sea species of the caridean shrimp genus Lebbeus White, 1847(Crustacea:Decapoda:Thoridae) from Southern Java, Indonesia. Raffles Bulletin of Zoology, 67:150-159, https://doi.org/10.26107/RBZ-2019-0012.
Komai T, Tsuchida S, Segonzac M. 2012. Records of species of the hippolytid genus Lebbeus White, 1847 (Crustacea:Decapoda:Caridea) from hydrothermal vents in the Pacific Ocean, with descriptions of three new species.Zootaxa, 3241(1):35-63, https://doi.org/10.11646/zootaxa.3241.1.2.
Kong L F, Li Y N, Kocot K M, Yang Y, Qi L, Li Q, Halanych K M. 2020. Mitogenomics reveals phylogenetic relationships of Arcoida (Mollusca, Bivalvia) and multiple independent expansions and contractions in mitochondrial genome size. Molecular Phylogenetics and Evolution, 150:106857, https://doi.org/10.1016/j.ympev.2020.106857.
Koopman W J H, Distelmaier F, Smeitink J A, Willems P H. 2013. OXPHOS mutations and neurodegeneration. The EMBO Journal, 32(1):9-29, https://doi.org/10.1038/emboj.2012.300.
Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary Biology, 7 Suppl 1:S4, https://doi.org/10.1186/1471-2148-7-S1-S4.
Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution, 21(6):1 095-1 109, https://doi.org/10.1093/molbev/msh112.
Lartillot N, Philippe H. 2006. Computing Bayes factors using thermodynamic integration. Systematic Biology, 55(2):195-207, https://doi.org/10.1080/10635150500433722.
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI:phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Systematic Biology, 62(4):611-615, https://doi.org/10.1093/sysbio/syt022.
Laslett D, Canbäck B. 2008. ARWEN:a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24(2):172-175, https://doi.org/10.1093/bioinformatics/btm573.
Li C P, de Grave S, Chan T Y, Lei H C, Chu K H. 2011. Molecular systematics of caridean shrimps based on five nuclear genes:implications for superfamily classification. Zoologischer Anzeiger-A Journal of Comparative Zoology, 250(4):270-279, https://doi.org/10.1016/j.jcz.2011.04.003.
Li R Q, Zhu H M, Ruan J, Qian W B, Fang X D, Shi Z B, Li Y R, Li S T, Shan G, Kristiansen K, Li S G, Yang H M, Wang J, Wang J. 2010. De novo assembly of human genomes with massively parallel short read sequencing.Genome Research, 20(2):265-272, https://doi.org/10.1101/gr.097261.109.
Li X Z. 2015. Report on two deep-water caridean shrimp species (Crustacea:Decapoda:Caridea:Alvinocarididae, Acanthephyridae) from the Northeastern South China Sea. Zootaxa, 3911(1):130-138, https://doi.org/10.11646/zootaxa.3911.1.8.
Li Y N, Kocot K M, Schander C, Santos S R, Thornhill D J, Halanych K M. 2015. Mitogenomics reveals phylogeny and repeated motifs in control regions of the deep-sea family Siboglinidae (Annelida). Molecular Phylogenetics and Evolution, 85:221-229, https://doi.org/10.1016/j.ympev.2015.02.008.
Lindner A, Cairns S D, Cunningham C W. 2008. From offshore to onshore:multiple origins of shallow-water corals from deep-sea ancestors. PLoS One, 3(6):e2429, https://doi.org/10.1371/journal.pone.0002429.
Lipps J H, Hickman C S. 1982. Origin, age and evolution of Antarctic and deep-sea faunas. In Ernst W G, Morin J G eds. The Environment of the Deep Sea. Prentice Hall, Englewood Cliffs. p.324-356.
Lorion J, Kiel S, Faure B, Kawato M, Ho S Y W, Marshall B, Tsuchida S, Miyazaki J I, Fujiwara Y. 2013. Adaptive radiation of chemosymbiotic deep-sea mussels. Proceedings of the Royal Society B:Biological Sciences, 280(1770):20131243, https://doi.org/10.1098/rspb.2013.1243.
Luo Y J, Gao W X, Gao Y Q, Tang S, Huang Q Y, Tan X L, Chen J, Huang T S. 2008. Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion, 8(5-6):352-357, https://doi.org/10.1016/j.mito.2008.07.005.
Martinez-Cruz O, Garcia-Carreño F, Robles-Romo A, VarelaRomero A, Muhlia-Almazan A. 2011. Catalytic subunits atpα and atpβ from the Pacific white shrimp Litopenaeus vannamei FOF1 ATP-synthase complex:cDNA sequences, phylogenies, and mRNA quantification during hypoxia. Journal of Bioenergetics and Biomembranes, 43(2):119-133, https://doi.org/10.1007/s10863-011-9340-0.
Mikkelsen N T, Kocot K M, Halanych K M. 2018. Mitogenomics reveals phylogenetic relationships of caudofoveate aplacophoran molluscs. Molecular Phylogenetics and Evolution, 127:429-436, https://doi.org/10.1016/j.ympev.2018.04.031.
Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark A G, Hosseini S, Brandon M, Easley K, Chen E, Brown M D, Sukernik R I, Olckers A, Wallace D C. 2003. Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences of the United States of America, 100(1):171-176, https://doi.org/10.1073/pnas.0136972100.
Moritz C, Brown W M. 1987. Tandem duplications in animal mitochondrial DNAs:variation in incidence and gene content among lizards. Proceedings of the National Academy of Sciences of the United States of America, 84(20):7 183-7 187, https://doi.org/10.1073/pnas.84.20.7183.
Norris R D, Kroon D, Klaus A. 2001. Introduction:cretaceouspaleogene climatic evolution of the western North Atlantic, results from ODP Leg 171B, Blake Nose. Proceedings of the Ocean Drilling Program, Scientific Results, 171B. Accessed at:http://www-odp.tamu.edu/publications/171B_SR/VOLUME/INTRO/SR171BIN.pdf on 2020-12-15.
Palero F, Crandall K A, Abelló P, Macpherson E, Pascual M. 2009. Phylogenetic relationships between spiny, slipper and coral lobsters (Crustacea, Decapoda, Achelata). Molecular Phylogenetics and Evolution, 50(1):152-162, https://doi.org/10.1016/j.ympev.2008.10.003.
Parker E S, Gealey W K. 1985. Plate tectonic evolution of the Western Pacific-Indian Ocean region. Energy, 10(3-4):249-261, https://doi.org/10.1016/0360-5442(85)90045-3.
Posada D. 2008. jModelTest:phylogenetic model averaging. Molecular Biology and Evolution, 25(7):1 253-1 256, https://doi.org/10.1093/molbev/msn083.
Rambaut A, Suchard M A, Xie D, Drummond A J. 2014. Tracer v1.6. Accessed at:http://beast.bio.ed.ac.uk/Tracer on 2020-12-15.
Raupach M J, Mayer C, Malyutina M, Wägele J W. 2009. Multiple origins of deep-sea Asellota (Crustacea:Isopoda) from shallow waters revealed by molecular data. Proceedings of the Royal Society B:Biological Sciences, 276(1658):799-808, https://doi.org/10.1098/rspb.2008.1063.
Sanders H L, Hessler R R. 1969. Ecology of the deep-sea benthos. Science, 163(3874):1 419-1 424, https://doi.org/10.1126/science.163.3874.1419.
Shen H, Braband A, Scholtz G. 2013. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Molecular Phylogenetics and Evolution, 66(3):776-789, https://doi.org/10.1016/j.ympev.2012.11.002.
Shi H F, Liu R Y, Sha Z L, Ma J P. 2012. Complete mitochondrial DNA sequence of Stenopus hispidus (Crustacea:Decapoda:Stenopodidea) and a novel tRNA gene cluster.Marine Genomics, 6:7-15, https://doi.org/10.1016/j.margen.2011.11.002.
Shock E L, McCollom T, Schulte M D. 1995. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems. Origins of Life and Evolution of the Biosphere, 25(1-3):141-159, https://doi.org/10.1007/BF01581579.
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology, 57(5):758-771, https://doi.org/10.1080/10635150802429642.
Sun S E, Hui M, Wang M X, Sha Z L. 2018a. The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea):Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 25:42-52, https://doi.org/10.1016/j.cbd.2017.11.002.
Sun S E, Sha Z L, Wang Y R. 2018b. Phylogenetic position of Alvinocarididae (Crustacea:Decapoda:Caridea):new insights into the origin and evolutionary history of the hydrothermal vent alvinocarid shrimps. Deep Sea Research Part I:Oceanographic Research Papers, 141:93-105, https://doi.org/10.1016/j.dsr.2018.10.001.
Sun S E, Sha Z L, Wang Y R. 2019a. Divergence history and hydrothermal vent adaptation of decapod crustaceans:a mitogenomic perspective. PLoS One, 14(10):e0224373, https://doi.org/10.1371/journal.pone.0224373.
Sun S E, Sha Z L, Wang Y R. 2019b. The complete mitochondrial genomes of two vent squat lobsters, Munidopsis lauensis and M. verrilli:novel gene arrangements and phylogenetic implications. Ecology and Evolution, 9(22):12 390-12 407, https://doi.org/10.1002/ece3.5542.
Takai K, Nakagawa S, Reysenbach A L, Hoek J. 2006. Microbial ecology of mid-ocean ridges and back-arc basins. In:Christie D M, Fisher C R, Lee S M, Givens S eds. Back-Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington DC. p.185-213.
Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4):564-577, https://doi.org/10.1080/10635150701472164.
Tsang L M, Chan T Y, Cheung M K, Chu K H. 2009. Molecular evidence for the Southern Hemisphere origin and deep-sea diversification of spiny lobsters (Crustacea:Decapoda:Palinuridae). Molecular Phylogenetics and Evolution, 51(2):304-311, https://doi.org/10.1016/j.ympev.2009.01.015.
Tsoi K H, Chan T Y, Chu K H. 2011. Phylogenetic and biogeographic analysis of the spear lobsters Linuparus(Decapoda:Palinuridae), with the description of a new species. Zoologischer Anzeiger-A Journal of Comparative Zoology, 250(4):302-315, https://doi.org/10.1016/j.jcz.2011.04.007.
Tunnicliffe V, Juniper S K, Sibuet M. 2003. Reducing environments of the deep-sea floor. In:Tyler P A ed. Ecosystems of the World. Elsevier, Amsterdam, Netherlands. p.81-110.
Van Dover C L. 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton.
Vermeij G J. 1987. Evolution and Escalation:an Ecological History of Life. Princeton University Press, Princeton.
Vermeij G J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21(2):125-152, https://doi.org/10.1017/S0094837300013178.
Wang Z F, Shi X J, Sun L X, Bai Y Z, Zhang D Z, Tang B P. 2017. Evolution of mitochondrial energy metabolism genes associated with hydrothermal vent adaption ofalvinocaridid shrimps. Genes & Genomics, 39(12):1 367-1 376, https://doi.org/10.1007/s13258-017-0600-1.
Woolley S N C, Tittensor D P, Dunstan P K, Guillera-Arroita G, Lahoz-Monfort J J, Wintle B A, Worm B, O'Hara T D. 2016. Deep-sea diversity patterns are shaped by energy availability. Nature, 533(7603):393-396, https://doi.org/10.1038/nature17937.
Wyman S K, Jansen R K, Boore J L. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20(17):3 252-3 255, https://doi.org/10.1093/bioinformatics/bth352.
Xin Q, Hui M, Li C L, Sha Z L. 2020. Eyes of differing colors in Alvinocaris longirostris from deep-sea chemosynthetic ecosystems:genetic and molecular evidence of its formation mechanism. Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-020-9312-5.
Yang C H, Bracken-Grissom H, Kim D, Crandall K A, Chan T Y. 2012. Phylogenetic relationships, character evolution, and taxonomic implications within the slipper lobsters(Crustacea:Decapoda:Scyllaridae). Molecular Phylogenetics and Evolution, 62(1):237-250, https://doi.org/10.1016/j.ympev.2011.09.019.
Yang C H, Kumar A B, Chan T Y. 2017. Further records of the deep-sea pandalid shrimp Heterocarpus chani Li, 2006(Crustacea, Decapoda, Caridea) from southern India. ZooKeys, 685:151-159, https://doi.org/10.3897/zookeys.685.13398.
Yang C H, Sha Z L, Chan T Y, Liu R Y. 2015. Molecular phylogeny of the deep-sea penaeid shrimp genus Parapenaeus (Crustacea:Decapoda:Dendrobranchiata). Zoologica Scripta, 44(3):312-323, https://doi.org/10.1111/zsc.12097.
Yang J S, Lu B, Chen D F, Yu Y Q, Yang F, Nagasawa H, Tsuchida S, Fujiwara Y, Yang W J. 2013. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans. Molecular Biology and Evolution, 30(2):305-309, https://doi.org/10.1093/molbev/mss224.
Yang Z H, Wong W S W, Nielsen R. 2005. Bayes empirical Bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution, 22(4):1 107-1 118, https://doi.org/10.1093/molbev/msi097.
Yang Z H. 2007. PAML 4:phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8):1 586-1 591, https://doi.org/10.1093/molbev/msm088.
Yuan M L, Zhang Q L, Guo Z L, Wang L, Shen Y Y. 2015. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta:Hemiptera:Heteroptera) and phylogenetic implications. BMC Genomics, 16(1):460, https://doi.org/10.1186/s12864-015-1679-x.
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517):686-693, https://doi.org/10.1126/science.1059412.
Zhang B, Zhang Y H, Wang X, Zhang H X, Lin Q. 2017. The mitochondrial genome of a sea anemone Bolocera sp. exhibits novel genetic structures potentially involved in adaptation to the deep-sea environment. Ecology and Evolution, 7(13):4 951-4 962, https://doi.org/10.1002/ece3.3067.
Zhang J Z, Nielsen R, Yang Z H. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12):2 472-2 479, https://doi.org/10.1093/molbev/msi237.
Zhou T C, Shen X J, Irwin D M, Shen Y Y, Zhang Y P. 2014. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds. Mitochondrion, 18:70-75, https://doi.org/10.1016/j.mito.2014.07.012.
Copyright © Haiyang Xuebao