Cite this paper:
Yang LIU, Youxin CHEN, Haiyan FANG, Hanyang LU, Xingqiang WU, Gongliang YU, Shin-ichi NAKANO, Renhui LI. Relationship between morphospecies and microcystinproducing genotypes of Microcystis species in Chinese freshwaters[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1926-1937

Relationship between morphospecies and microcystinproducing genotypes of Microcystis species in Chinese freshwaters

Yang LIU1,5, Youxin CHEN2, Haiyan FANG1, Hanyang LU1, Xingqiang WU2, Gongliang YU2, Shin-ichi NAKANO3, Renhui LI4
1 College of Life Science, Henan Normal University, Xinxiang 453007, China;
2 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
3 Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan;
4 College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China;
5 Journal of Henan Normal University, Xinxiang 453007, China
Twenty water bodies in China were sampled, and 186 strains of different Microcystis species were isolated, from which eight morphospecies were identified and 43 stains containing the mcyB gene were detected. Phylogenetic analysis based on the mcyB gene indicated that the microcystin (MC)-producing Microcystis in China could be divided into two groups (I and II) and showed significant differences between the two groups. The maximum sequence similarity was 69.1%. Microcystins (MCs) were measured by high-performance liquid chromatography (HPLC) analysis, and no microcystin-RR (MC-RR) was detected in some strains belonging to Group II. Compared to other regions of the world, the proportion of Chinese MC-producing Microcystis was different, and the regional differences were more obvious. A whole-cell polymerase chain reactio (PCR) assay was conducted to analyze the proportion of the mcyB gene in the laboratory cultured and field cultured Microcystis. The proportion of four morphospecies (M. vividis, M. ichthyoblabe, M. novacekii, and M. aeruginosa) that contained the mcyB gene exceeded 50% in the field cultured samples. Compared with former studies, M. aeruginosa was the most likely morphotype that can produce MCs in the world. This study provided new insight of Microcystis hazard assessment and field monitoring.
Key words:    Microcystis|morphospecies|mcyB|16S rDNA|microcystin|high-performance liquid chromatography (HPLC)   
Received: 2020-07-22   Revised: 2020-09-29
PDF (1795 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Yang LIU
Articles by Youxin CHEN
Articles by Haiyan FANG
Articles by Hanyang LU
Articles by Xingqiang WU
Articles by Gongliang YU
Articles by Shin-ichi NAKANO
Articles by Renhui LI
Attard T J, Carter M D, Fang M X, Johnson R C, Reid G E. 2018. Structural characterization and absolute quantification of microcystin peptides using collisioninduced and ultraviolet photo-dissociation tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 29(9):1 812-1 825,
Cirés S, Wörmer L, Carrasco D, Quesada A. 2013. Sedimentation patterns of toxin-producing Microcystis morphospecies in freshwater reservoirs. Toxins, 5(5):939-957,
Dyble J, Fahnenstiel G L, Litaker R W, Millie D F, Tester P A. 2008. Microcystin concentrations and genetic diversity of Microcystis in the Lower Great Lakes. Environmental Toxicology, 23(4):507-516,
Hotto A M, Satchwell M F, Berry D L, Gobler C J, Boyer G L. 2008. Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae, 7(5):671-681,
Howitt C A. 1996. Amplification of DNA from whole cells of cyanobacteria using PCR. Biotechniques, 21(1):32-34,
Ichimura T. 1979. Media for blue-green algae. In:Nishizawa K, Chihara M eds. Methods in Algalogical Studies.Kyouritsu, Tokyo, p.294-305.
Jungmann D, Ludwichowski K U, Faltin V, Benndorf J. 1996. A field study to investigate environmental factors that could effect microcystin synthesis of a Microcystis population in the Bautzen reservoir. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 81(4):493-501,
Kimura M. 1980. Kimura's two-parameter model of Models of DNA Evolution. In:Felsenstein J ed. 2004. Inferring Phylogenies. Sunderland, Massachusetts:Sinauer Associates, Inc.
Komárek J, Anagnostidis K. 1998. Cyanoprokaryota 1. Teil:chroococcales. In:Ettl H, Gärtner G, Heynig H, Mollenhauer D eds. Süßwasserflora von Mitteleuropa, Bd 19/1. Gustav Fischer, Jena, p.164-190.
Komárek J, Komárková J. 2002. Review of the European Microcystis morphospecies (Cyanoprokaryotes) from nature. Fottea, 2(1):1-24.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X:molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6):1 547-1 549,
Kurmayer R, Dittmann E, Fastner J, Chorus I. 2002. Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee(Berlin, Germany). Microbial Ecology, 43(1):107-118,
Le Ai Nguyen V, Tanabe Y, Matsuura H, Kaya K, Watanabe M M. 2012. Morphological, biochemical and phylogenetic assessments of water-bloom-forming tropical morphospecies of Microcystis (Chroococcales, Cyanobacteria). Phycological Research, 60(3):208-222,
Liu Y, Tan W H, Wu X Q, Wu Z X, Yu G L, Li R H. 2011. First report of microcystin production in Microcystis smithii Komárek and Anagnostidis (Cyanobacteria) from a water bloom in Eastern China. Journal of Environmental Sciences, 23(1):102-107,
Liu Y, Xu Y, Wang Z J, Xiao P, Yu G L Wang G X, Li R H. 2016. Dominance and succession of Microcystis genotypes and morphotypes in Lake Taihu, a large and shallow freshwater lake in China. Environmental Pollution, 219:399-408,
Meißner K, Dittmann E, Börner T. 1996. Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiology Letters, 135(2-3):295-303,
Mikalsen B, Boison G, Skulberg O M, Fastner J, Davies W, Gabrielsen T M, Rudi K, Jakobsen K S. 2003. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. Journal of Bacteriology, 185(9):2 774-2 785,
Neilan B A, Jacobs D, Therese D D, Blackall L L, Hawkins P R, Cox P T, Goodman A E. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic and Evolutionary Microbiology, 47(3):693-697,
Otsuka S, Suda S, Li R H, Matsumoto S, Watanabe M M. 2000. Morphological variability of colonies of Microcystis morphospecies in culture. The Journal of General and Applied Microbiology, 46(1):39-50,
Otsuka S, Suda S, Li R H, Watanabe M, Oyaizu H, Matsumoto S, Watanabe M M. 1998. 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiology Letters, 164(1):119-124,
Otsuka S, Suda S, Li R H, Watanabe M, Oyaizu H, Matsumoto S, Watanabe M M. 1999a. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiology Letters, 172(1):15-21,
Otsuka S, Suda S, Li R H, Watanabe M, Oyaizu H, Matsumoto S, Watanabe M M. 1999b. Characterization of morphospecies and strains of the genus Microcystis(Cyanobacteria) for a reconsideration of species classification. Phycological Research, 47(3):189-197,
Otten T G, Paerl H W. 2011. Phylogenetic inference of colony isolates comprising seasonal Microcystis blooms in Lake Taihu, China. Microbial Ecology, 62(4):907-918,
Palinska K A, Liesack W, Rhiel E, Krumbein W E. 1996. Phenotype variability of identical genotypes:the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Archives of Microbiology, 166(4):224-233,
Pan H, Song L R, Liu Y D, Zhu Y Z, Shen Q. 2001. Characterization of toxic waterbloom-forming cyanobacteria by modified PCR. Acta Hydrobiologica Sinica, 25(2):159-166, (in Chinese with English abstract)
Pérez-Carrascal O M, Terrat Y, Giani A, Fortin N, Greer C W, Tromas N, Shapiro B J. 2019. Coherence of Microcystis species revealed through population genomics. The ISME Journal, 13(12):2887-2900,
Rantala A, Fewer D P, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 101(2):568-573,
Shan K, Shang M S, Zhou B T, Li L, Wang X X, Yang H, Song L R. 2019. Application of Bayesian network including Microcystis morphospecies for microcystin risk assessment in three cyanobacterial bloom-plagued lakes, China. Harmful Algae, 83:14-24,
Shen L Q, Ma S C, Cai F F, Yu G L, Li S C, Li R H. 2018. Polyphasic examination on Merismopedia tenuissima CHAB 7021 from Ganjiang River, China revealed the polyphyly of the genus Merismopedia (Cyanobacteria). Journal of Oceanology and Limnology, 36(4):1 157-1 165,
Sidelev S, Zubishina A, Chernova E. 2020. Distribution of microcystin-producing genes in Microcystis colonies from some Russian freshwaters:is there any correlation with morphospecies and colony size? Toxicon, 184:136-142,
Song L R, Sano T, Li R H, Watanabe M M, Liu Y D, Kaya K. 1998. Microcystin production of Microcystis viridis(cyanobacteria) under different culture conditions. Phycological Research, 46(S2):19-23,
Tan W H, Liu Y, Wu Z X, Lin S, Yu G L, Yu B S, Li R H. 2010. CpcBA-IGS as an effective marker to characterize Microcystis wesenbergii (Komárek) Komárek in Kondrateva (cyanobacteria). Harmful Algae, 9(6):607-612,
Tanabe Y, Kaya K, Watanabe M M. 2004. Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. Journal of Molecular Evolution, 58(6):633-641,
Tsujimura S, Tsukada H, Nakahara H, Nakajima T, Nishino M. 2000. Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia, 434(1):183-192,
Vasconcelos V M, Pereira E. 2001. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Research, 35(5):1 354-1 357,
Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I. 2004. Distribution of microcystin-producing and nonmicrocystin-producing Microcystis sp. in European freshwater bodies:detection of microcystins and microcystin genes in individual colonies. Systematic and Applied Microbiology, 27(5):592-602,
Wang H J, Xu C, Liu Y, Jeppesen E, Svenning J C, Wu J, Wu J G, Zhang W X, Zhou T J, Wang P, Nangombe S, Ma J, Duan H T, Fang J Y, Xie P. 2021. From unusual suspect to serial killer:cyanotoxins boosted by climate change may jeopardize megafauna. The Innovation, 2(2):100092,
Wang Z J, Song G F, Li Y G, Yu G L, Hou X Y, Gan Z X, Li R H. 2019. The diversity, origin, and evolutionary analysis of geosmin synthase gene in cyanobacteria. Science of the Total Environment, 689:789-796,
WHO. 1998. Guidelines for Drinking-Water Quality, Volume 2-Health Criteria and Other Supporting Information. Addendum. 2nd edn. World Health Organization, Geneva.
Wiedner C, Visser P M, Fastner J, Metcalf J S, Codd G A, Mur L R. 2003. Effects of light on the microcystin content of Microcystis Strain PCC 7806. Applied and Environmental Microbiology, 69(3):1 475-1 481,
Wu Z X, Gan N Q, Song L R. 2007. Genetic diversity:geographical distribution and toxin profiles of Microcystis strains (cyanobacteria) in China. Journal of Integrative Plant Biology, 49(3):262-269,
Xiao M, Willis A, Burford M A, Li M. 2017. Review:a metaanalysis comparing cell-division and cell-adhesion in Microcystis colony formation. Harmful Algae, 67:85-91,
Xu Y, Wu Z X, Yu B S, Peng X, Yu G L, Wei Z H, Wang G X, Li R H. 2008. Non-microcystin producing Microcystis wesenbergii (Komárek) Komárek (Cyanobacteria) representing a main waterbloom-forming species in Chinese waters. Environmental Pollution, 156(1):162-167,
Copyright © Haiyang Xuebao