Cite this paper:
Bin LIU, Waseem Haider SYED, Jiangxin CHEN, Xiguang DENG, Li YANG, Leonardo AZEVEDO, Minliang DUAN, Tingting WU, Jinfeng MA, Keliang LI. Distinct BSRs and their implications for natural gas hydrate formation and distribution at the submarine Makran accretionary zone[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1871-1886

Distinct BSRs and their implications for natural gas hydrate formation and distribution at the submarine Makran accretionary zone

Bin LIU1, Waseem Haider SYED2, Jiangxin CHEN3,4, Xiguang DENG1, Li YANG1, Leonardo AZEVEDO5, Minliang DUAN3,6, Tingting WU1, Jinfeng MA1, Keliang LI1
1 Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510760, China;
2 National Institute of Oceanography, Karachi 75600, Pakistan;
3 Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China;
4 Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;
5 CERENA/Instituto Superior Técnico, Lisbon University, Lisbon 1049-001, Portugal;
6 Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
Abstract:
To investigate the nature of gas hydrates in the Makran area, new high-resolution geophysical data were acquired between 2018-2019. The data collected comprise multibeam and two-dimensional multi-channel seismic reflection data. The multibeam bathymetry data show East-North-East (ENE) ridges, piggy-back basins, canyon and channel systems, and the morphology of the abyssal plain. Continuous and discontinuous bottom simulating reflectors (BSRs) occur in the piggy-back basins on most of the seismic profiles available. The BSRs cut the dipping layers with strong amplitude and reversed polarity. Discontinuous BSRs indicate a transition along a dipping high-permeable sand layers from gas-rich segment to the gas hydrate-bearing segment and suggest alternating sediments of fine and relatively coarse grain size. Double BSRs are highly dynamic and attributed to slumps occurring in the study area. The BSRs induced by slumps are located both at deep and shallow depths, responding to the temperature or pressure variation. For the first time, BSRs are observed in the abyssal plain of the Makran area, being associated with anticline structures, which do not show large spatial continuity and are strongly conditioned by structural conditions such as anticlines and fluid migration pathways, including deep fault, gas chimney, and high-permeable sedimentary layer. Our results may help to assess the gas hydrate potential within the piggy-back basins and to determine the most promising target areas. Moreover, results about the abyssal plain BSR may help to locate hydrocarbon reservoirs in the deep ocean.
Key words:    gas hydrate-bearing sand-prone sediments|double bottom simulating reflector (BSR)|multiple BSR|canyon channel system|abyssal plain   
Received: 2020-08-10   Revised: 2020-11-13
Tools
PDF (8831 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Bin LIU
Articles by Waseem Haider SYED
Articles by Jiangxin CHEN
Articles by Xiguang DENG
Articles by Li YANG
Articles by Leonardo AZEVEDO
Articles by Minliang DUAN
Articles by Tingting WU
Articles by Jinfeng MA
Articles by Keliang LI
References:
Bangs N L B, Musgrave R J, Tréhu A M. 2005. Upward shifts in the southern Hydrate Ridge gas hydrate stability zone following postglacial warming, offshore Oregon. Journal of Geophysical Research, 110(B3):B03102, https://doi.org/10.1029/2004JB003293.
Berndt C, Bünz S, Clayton T, Mienert J, Saunders M. 2004. Seismic character of bottom simulating reflectors:examples from the mid-Norwegian margin. Marine and Petroleum Geology, 21(6):723-733, https://doi.org/10.1016/j.marpetgeo.2004.02.003.
Bohrmann G, Bahr A, Brinkmann F, Bruning M, Buhmann S, Diekamp V, Enneking K, Fischer D, Gassner A, von Halem G, Huettich D, Kasten S, Klapp S, Nasir M, Nowald N, Ochsenhirt W T, Pape T, Ratmeyer V, Rehage R, Rethemeyer J, Reuter M, Rossel P, Saleem M, Schmidt W, Seiter C, Stephan S, Thomanek K, Wittenberg N, Yoshinaga M and Zonneveld K. 2008. Report and Preliminary Results of R/V Meteor Cruise M74/3, Fujairah-Male, 30 October-28 November, 2007. Cold Seeps of the Makran Subduction Zone (Continental Margin of Pakistan). Bremen University, Bremen. p.1-161.
Boswell R, Collett T S. 2011. Current perspectives on gas hydrate resources. Energy & Environmental Science, 4(4):1 206-1 215, https://doi.org/10.1039/C0EE00203H.
Boswell R, Collett T S, Frye M, Shedd B, McConnell D R, Shelander D. 2012. Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 34(1):4-30, https://doi.org/10.1016/j.marpetgeo.2011.10.003.
Clift P, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones:implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42(2):RG2001, https://doi.org/10.1029/2003RG000127.
Delisle G. 2004. The mud volcanoes of Pakistan. Environmental Geology, 46(8):1 024-1 029, https://doi.org/10.1007/s00254-004-1089-x.
Delisle G, von Rad U, Andruleit H, von Daniels C, Tabrez A, Inam A. 2002. Active mud volcanoes on- and offshore eastern Makran, Pakistan. International Journal of Earth Sciences, 91(1):93-110, https://doi.org/10.1007/s005310100203.
DeMets C, Gordon R G, Argus D F, Stein S. 1990. Current plate motions. Geophysical Journal International, 101(2):425-478, https://doi.org/10.1111/j.1365-246X.1990.tb06579.x.
Dickens G R, Quinby-Hunt M S. 1994. Methane hydrate stability in seawater. Geophysical Research Letters, 21(19):2 115-2 118, https://doi.org/10.1029/94GL01858.
Ding F, Spiess V, Fekete N, Murton B, Brüning M, Bohrmann G. 2010. Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage. Journal of Geophysical Research, 115(B8):B08106, https://doi.org/10.1029/2008JB006246.
Foucher J P, Nouzé H, Henry P. 2002. Observation and tentative interpretation of a double BSR on the Nankai slope. Marine Geology, 187(1-2):161-175, https://doi.org/10.1016/S0025-3227(02)00264-5.
Fruehn J, White R S, Minshull T A. 1997. Internal deformation and compaction of the Makran accretionary wedge. Terra Nova, 9(3):101-104, https://doi.org/10.1046/j.1365-3121.1997.d01-13.x.
Geletti R, Busetti M. 2011. A double bottom simulating reflector in the western Ross Sea, Antarctica. Journal of Geophysical Research, 116(B4):B04101, https://doi.org/10.1029/2010JB007864.
Golonka J. 2004. Plate tectonic evolution of the Southern Margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1-4):235-273, https://doi.org/10.1016/j.tecto.2002.06.004.
Grevemeyer I, Rosenberger A, Villinger H. 2000. Natural gas hydrates on the continental slope off Pakistan:Constraints from seismic techniques. Geophysical Journal International, 140(2):295-310, https://doi.org/10.1046/j.1365-246x.2000.00009.x.
Hosseini M A, Maleki A B, Mokhtari M. 2018. Splay faults in the Makran subduction zone and changes of their transferred coulomb stress. Journal of the Earth and Space Physics, 43(4):1-10, https://doi.org/10.22059/jesphys.2017.61703.
Hyndman R D, Spence G D. 1992. A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research, 97(B5):6 683-6 698, https://doi.org/10.1029/92JB00234.
Kassi A M, Khan S D, Bayraktar H, Kasi A K. 2014. Newly discovered mud volcanoes in the Coastal Belt of Makran, Pakistan-tectonic implications. Arabian Journal of Geosciences, 7(11):4 899-4 909, https://doi.org/10.1007/s12517-013-1135-7.
Kukowski N, Schillhorn T, Huhn K, von Rad U, Husen S, Flueh E R. 2001. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Marine Geology, 173(1-4):1-19, https://doi.org/10.1016/S0025-3227(00)00167-5.
Kvenvolden K A. 1993. Gas hydrates-Geological perspective and global change. Reviews of Geophysics, 31(2):173-187, https://doi.org/10.1029/93RG00268.
Majumdar U, Cook A E, Shedd W, Frye M. 2016. The connection between natural gas hydrate and bottom-simulating reflectors. Geophysical Research Letters, 43(13):7 044-7 051, https://doi.org/10.1002/2016GL069443.
Minshull T, White R. 1989. Sediment compaction and fluid migration in the Makran Accretionary Prism. Journal of Geophysical Research, 94(B6):7 387-7 402, https://doi.org/10.1029/JB094iB06p07387.
Minshull T A, White R S, Barton P J, Collier J S. 1992. Deformation at plate boundaries around the Gulf of Oman. Marine Geology, 104(1-4):265-277, https://doi.org/10.1016/0025-3227(92)90101-M.
Petersen C J, Papenberg C, Klaeschen D. 2007. Local seismic quantification of gas hydrates and BSR characterization from multi-frequency OBS data at northern Hydrate Ridge. Earth and Planetary Science Letters, 255(3-4):414-431, https://doi.org/10.1016/j.epsl.2007.01.002.
Popescu I, De Batist M, Lericolais G, Nouzé H, Poort J, Panin N, Versteeg W, Gillet H. 2006. Multiple bottom-simulating reflections in the Black Sea:potential proxies of past climate conditions. Marine Geology, 227(3-4):163-176, https://doi.org/10.1016/j.margeo.2005.12.006.
Posewang J, Mienert J. 1999. The enigma of double BSRs:indicators for changes in the hydrate stability field? GeoMarine Letters, 19(1-2):157-163, https://doi.org/10.1007/s003670050103.
Römer M, Sahling H, Pape T, Bohrmann G, Spieß V. 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin(offshore Pakistan). Journal of Geophysical Research, 117(C10):C10015, https://doi.org/10.1029/2011JC007424.
Sain K, Minshull T A, Singh S C, Hobbs R W. 2000. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism. Marine Geology, 167(1-2):3-12, https://doi.org/10.1016/S0025-3227(99)00122-X.
Schlüter H U, Prexl A, Gaedicke C, Roeser H, Reichert C, Meyer H, von Daniels C. 2002. The Makran accretionary wedge:sediment thicknesses and ages and the origin of mud volcanoes. Marine Geology, 185(3-4):219-232, https://doi.org/10.1016/s0025-3227(02)00192-5.
Shedd W, Boswell R, Frye M, Godfriaux P, Kramer K. 2012. Occurrence and nature of "bottom simulating reflectors" in the northern Gulf of Mexico. Marine and Petroleum Geology, 34(1):31-40, https://doi.org/10.1016/j.marpetgeo.2011.08.005.
Shipley T H, Houston M H, Buffler R T, Shaub F J, McMillen K J, Ladd J W, Worzel J L. 1979. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bulletin, 63(12):2 204-2 213, https://doi.org/10.1306/2f91890a-16ce-11d7-8645000102c1865d.
Smith G, McNeill L, Henstock T J, Bull J. 2012. The structure and fault activity of the Makran accretionary prism. Journal of Geophysical Research, 117(B7):B07407, https://doi.org/10.1029/2012JB009312.
Smith G L, McNeill L C, Henstock T J, Arraiz D, Spiess V. 2014. Fluid generation and distribution in the highest sediment input accretionary margin, the Makran. Earth and Planetary Science Letters, 403:131-143, https://doi.org/10.1016/j.epsl.2014.06.030.
Tamaki M, Fujii T, Suzuki K. 2017. Characterization and prediction of the gas hydrate reservoir at the second offshore gas production test site in the Eastern Nankai Trough, Japan. Energies, 10(10):1 678, https://doi.org/10.3390/en10101678.
Tinivella U, Giustiniani M. 2013. Variations in BSR depth due to gas hydrate stability versus pore pressure. Global and Planetary Change, 100:119-128, https://doi.org/10.1016/j.gloplacha.2012.10.012.
Vanneste M, De Batist M, Golmshtok A, Kremlev A, Versteeg W. 2001. Multi-frequency seismic study of gas hydratebearing sediments in Lake Baikal, Siberia. Marine Geology, 172(1-2):1-21, https://doi.org/10.1016/S0025-3227(00)00117-1.
Von Rad U, Berner U, Delisle G, Doose-Rolinski H, Fechner N, Linke P, Lückge A, Roeser H A, Schmaljohann R, Wiedicke M, SONNE 122/130 Scientific Parties, Block M, Damm V, Erbacher J, Fritsch J, Harazim B, Poggenburg J, Scheeder G, Schreckenberger B, von Mirbach N, Drews M, Walter S, Ali Khan A, Inam A, Tahir M, Tabrez A R, Cheema A H, Pervaz M, Ashraf M. 2000. Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo-Marine Letters, 20(1):10-19, https://doi.org/10.1007/s003670000033.
Von Rad U, Rösch H, Berner U, Geyh M, Marchig V, Schulz H. 1996. Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Marine Geology, 136(1-2):55-77, https://doi.org/10.1016/S0025-3227(96)00017-5.
Wessel P, Lius J F. 2017. The GMT/MATLAB Toolbox. Geochemistry, Geophysics, Geosystems, 18:811-823, https://doi.org/10.1002/2016GC006723.
White R S. 1977. Seismic bright spots in the Gulf of Oman. Earth and Planetary Science Letters, 37(1):29-37, https://doi.org/10.1016/0012-821X(77)90143-1.
Wiedicke M, Neben S, Spiess V. 2001. Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Marine Geology, 172(1-2):57-73, https://doi.org/10.1016/S0025-3227(00)00127-4.
Zander T, Haeckel M, Berndt C, Chi W C, Klaucke I, Bialas J, Klaeschen D, Koch S, Atgın O. 2017. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth and Planetary Science Letters, 462:15-25, https://doi.org/10.1016/j.epsl.2017.01.006.
Copyright © Haiyang Xuebao