Cite this paper:
Chaofeng WANG, Haibo LI, Yi DONG, Li ZHAO, G�rald GREGORI, Yuan ZHAO, Wuchang ZHANG, Tian XIAO. Planktonic ciliate trait structure variation over Yap, Mariana, and Caroline seamounts in the tropical Western Pacific Ocean[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1705-1717

Planktonic ciliate trait structure variation over Yap, Mariana, and Caroline seamounts in the tropical Western Pacific Ocean

Chaofeng WANG1,2,3, Haibo LI1,2,3, Yi DONG1,2,3, Li ZHAO1,2,3, G�rald GREGORI4, Yuan ZHAO1,2,3, Wuchang ZHANG1,2,3, Tian XIAO1,2,3
1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 Aix-Marseille University, Toulon University, CNRS, IRD, Mediterranean Institute of Oceanology UM110, Marseille 13288, France
Trait structure is increasingly used in plankton ecology to understand diversity and biogeography. However, our knowledge of microzooplankton (e.g. planktonic ciliates) trait structure and its variation with hydrography is limited. In this study, we analyzed planktonic ciliate trait structure in waters with different hydrography and deep Chlorophyll a maximum (DCM) layers over three seamounts:Yap, Mariana, and Caroline seamounts. Mariana seamount had a lower surface temperature than the Yap and Caroline seamounts. DCM layers over Mariana and Caroline seamounts were deeper than Yap seamount. There was a weak upwelling in upper 50 m around top of Mariana seamount. The ciliate distribution showed bimodal pattern (high abundance appeared in the surface and DCM layers) over three seamounts. At surface layer, the large size-fraction (>30 μm) abundance proportion to aloricate ciliate over Yap seamount (44.4%) was higher than Mariana (32.8%) and Caroline (36.1%) seamounts. For tintinnid abundance proportion to total ciliate, Mariana (12.0%) and Caroline (11.5%) seamounts at about 100-m depth were higher than that of Yap seamount (6.4%). Vertically, tintinnid could be divided into 4 groups over the three seamounts. At 30-m depth, group I (species occurring from surface to 100 m only) was dominant component over Yap and Caroline seamounts, while group Ⅳ (species occurring at every depth) changed into dominant component over Mariana seamount, the weak upwelling might be the reason. Salpingella faurei was the top dominant species, which corresponded to deeper DCM layers over Mariana and Caroline seamounts. Our results showed that the upwelling and the deeper DCM could influence the planktonic ciliate trait structure.
Key words:    planktonic ciliate|upwelling|seamount|vertical distribution|Western Pacific Ocean   
Received: 2020-12-15   Revised: 2021-02-27
PDF (3580 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Chaofeng WANG
Articles by Haibo LI
Articles by Yi DONG
Articles by Li ZHAO
Articles by G�rald GREGORI
Articles by Yuan ZHAO
Articles by Wuchang ZHANG
Articles by Tian XIAO
Alder V A. 1999. Tintinnoinea. In:Boltovskoy D ed. South Atlantic Zooplankton. Backhuys Publishers, Leiden, Netherlands. p.321-384.
Azam F, Fenchel T, Field J G, Gray G S, Meyer-Reil L A, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Marine Ecology-Progress Series, 10(3):257-263,
Brun P, Payne M R, Kiørboe T. 2016. Trait biogeography of marine copepods-an analysis across scales. Ecology Letters, 19(12):1 403-1 413,
Calbet A, Saiz E. 2005. The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology, 38(2):157-167,
Capriulo G M, Gold K, Okubo A. 1982. Evolution of the lorica in tintinnids:a possible selective advantage. Annales de L'Institut Océanographique, 58(Suppl):319-323.
Dai S, Zhao Y F, Li X G, Wang Z Y, Zhu M L, Liang J H, Liu H J, Tian Z Y, Sun X X. 2020. The seamount effect on phytoplankton in the tropical western Pacific. Marine Environmental Research, 162:105094,
Dolan J R, Montagnes D J S, Agatha S, Coats D W, Stoecker D K. 2013. The Biology and Ecology of Tintinnid Ciliates:Models for Marine Plankton. John Wiley & Sons, Chichester. p.1-296.
Dolan J R, Vidussi F, Claustre H. 1999. Planktonic ciliates in the Mediterranean Sea:longitudinal trends. Deep Sea Research Part I:Oceanographic Research Papers, 46(12):2 025-2 039,
Dolan J R, Yang E J. 2017. Observations of apparent lorica variability in Salpingacantha (Ciliophora:tintinnida) in the Northern Pacific and Arctic Oceans. Acta Protozoologica, 56(3):217-220,
Dolan J R, Yang E J, Kang S H, Rhee T S. 2016. Declines in both redundant and trace species characterize the latitudinal diversity gradient in tintinnid ciliates. The ISME Journal, 10(9):2 174-2 183,
Gómez F. 2007. Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecologica, 32(2):188-202,
Kato S, Taniguchi A. 1993. Tintinnid ciliates as indicator species of different water masses in the western North Pacific Polar Front. Fisheries Oceanography, 2(3-4):166-174,
Kiørboe T, Visser A, Andersen K H. 2018. A trait-based approach to ocean ecology. ICES Journal of Marine Science, 75(6):1 849-1 863,
Kofoid C A, Campbell A S. 1929. A conspectus of the marine and fresh-water Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz Expedition to the Eastern Tropical Pacific, 1904-1905. University of California Publications in Zoology, 34:1-403.
Kršinić F. 1982. On vertical distribution of tintinnines (Ciliata, Oligotrichida, Tintinnina) in the open waters of the South Adriatic. Marine Biology, 68(1):83-90,
Lessard E J, Murrell M C. 1996. Distribution, abundance and size composition of heterotrophic dinoflagellates and ciliates in the Sargasso Sea near Bermuda. Deep Sea Research Part I:Oceanographic Research Papers, 43(7):1 045-1 065,
Li H B, Zhang W C, Zhao Y, Zhao L, Dong Y, Wang C F, Liang C, Xiao T. 2018. Tintinnid diversity in the tropical west pacific ocean. Acta Oceanologica Sinica, 37(10):218-228,
Litchman E, Ohman M D, Kiørboe T. 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research, 35(3):473-484, 1093/plankt/fbt019.
Lund J W G, Kipling C, Le Cren E D. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11(2-3):143-170,
Lynn D H. 2008. The Ciliated Protozoa:Characterization, Classification, and Guide to the Literature. 3th edn. Springer, Dordrecht. p.1-455.
Ma J, Song J M, Li X G, Yuan H M, Li N, Duan L Q, Wang Q D. 2019. Environmental characteristics in three seamount areas of the tropical Western Pacific Ocean:focusing on nutrients. Marine Pollution Bulletin, 143:163-174,
Martin E S, Harris R P, Irigoien X. 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 53(14-16):1 560-1 572,
Paranjape M A, Gold K. 1982. Cultivation of marine pelagic protozoa. Annales de L'Institut Océanographique, 58(Suppl):143-150.
Pierce R W, Turner J T. 1992. Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Sciences, 6(2):139-181.
Pomerleau C, Sastri A R, Beisner B E. 2015. Evaluation of functional trait diversity for marine zooplankton communities in the northeast subarctic Pacific Ocean. Journal of Plankton Research, 37(4):712-726,
Prowe A E F, Visser A W, Andersen K H, Chiba S, Kiørboe T. 2019. Biogeography of zooplankton feeding strategy. Limnology and Oceanography, 64(2):661-678,
Putt M, Stoecker D K. 1989. An experimentally determined carbon:volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnology and Oceanography, 34(6):1 097-1 103, 4319/lo.1989.34.6.1097.
Rogers A D. 1994. The biology of seamounts. Advances in Marine Biology, 30:305-350,
Rogers A D. 2018. The biology of seamounts:25 Years on. Advances in Marine Biology, 79:137-224,
Sime-Ngando T, Juniper K, Vézina A. 1992. Ciliated protozoan communities over Cobb Seamount:increase in biomass and spatial patchiness. Marine Ecology-Progress Series, 89(1):37-51,
Sohrin R, Imazawa M, Fukuda H, Suzuki Y. 2010. Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 57(16):1 537-1 550,
Stoecker D K, Michaels A E, Davis L H. 1987. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. Journal of Plankton Research, 9(5):901-915,
Teuber L, Hagen W, Bode M, Auel H. 2019. Who is who in the tropical Atlantic? Functional traits, ecophysiological adaptations and life strategies in tropical calanoid copepods. Progress in Oceanography, 171:128-135,
Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-Methodik:mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel:methods of collecting plankton for various purposes are discussed. SIL Communications, 1953-1996:Internationale Vereinigung für Theoretische und Angewandte Limnologie:Mitteilungen, 9(1):1-38, 0.1958.11904091.
Verity P G, Lagdon C. 1984. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. Journal of Plankton Research, 6(5):859-868,
Wang C F, Li H B, Xu Z Q, Zheng S, Hao Q, Dong Y, Zhao L, Zhang W C, Zhao Y, Grégori G, Xiao T. 2020. Difference of planktonic ciliate communities of the tropical West Pacific, the Bering Sea and the Arctic Ocean. Acta Oceanologica Sinica, 39(4):9-17,
Wang C F, Li H B, Zhao L, Zhao Y, Dong Y, Zhang W C, Xiao T. 2019a. Vertical distribution of planktonic ciliates in the oceanic and slope areas of the western Pacific Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 167:70-78,
Wang C F, Xu Z Q, Liu C G, Li H B, Liang C, Zhao Y, Zhang G T, Zhang W C, Xiao T. 2019b. Vertical distribution of oceanic tintinnid (Ciliophora:Tintinnida) assemblages from the Bering Sea to Arctic Ocean through Bering Strait. Polar Biology, 42(11):2 105-2 117,
Yu Y, Zhang W C, Feng M P, Zhao Y, Zhang C X, Zhou F, Xiao T. 2016. Differences in the vertical distribution and response to freshwater discharge between aloricate ciliates and tintinnids in the East China Sea. Journal of Marine Systems, 154:103-109,
Zhang W C, Feng M P, Yu Y, Zhang C X, Xiao T. 2012. An Illustrated Guide to Contemporary Tintinnids in the World. Science Press, Beijing, China. p.1-499. (in Chinese)
Zhang W C, Yu Y, Xiao T. 2015. An Illustrated Guide to Marine Planktonic Aloricate Oligotrich Ciliates. Science Press, Beijing, China. p.1-135. (in Chinese)
Zhao L, Zhao Y C, Wang C F, Zhang W C, Sun X X, Li X G, Zhao Y, Xiao T. 2017. Comparison in the distribution of microbial food web components in the Y3 and M2 seamounts in the tropical western Pacific. Oceanologia et Limnologia Sinica, 48(6):1 446-1 455. (in Chinese with English abstract)
Zhao Y C, Zhao Y, Zheng S, Zhao L, Li X G, Zhang W C, Grégori G, Xiao T. 2020. Virioplankton distribution in the tropical western Pacific Ocean in the vicinity of a seamount. MicrobiologyOpen, 9(6):1 207-1 224,
Copyright © Haiyang Xuebao