Cite this paper:
Yuan TIAN, Simin HU, Xianzhi LIN, Hui HUANG, Xingyu SONG, Yan YAN, Xuedong XIE, Tao LI, Sheng LIU. Mechanisms of high-frequency dinoflagellate blooms of Scrippsiella trochoidea in Daya Bay, South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(4): 1293-1304

Mechanisms of high-frequency dinoflagellate blooms of Scrippsiella trochoidea in Daya Bay, South China Sea

Yuan TIAN1,2, Simin HU1, Xianzhi LIN1, Hui HUANG1,3, Xingyu SONG1,4, Yan YAN1, Xuedong XIE5, Tao LI1,3, Sheng LIU1
1 Key Laboratory of Tropical Marine Bio-resources and Ecology;Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China;
4 Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Guangzhou 510301, China;
5 Guangdong Ocean and Fishery Environment Monitoring and Forecasting Center, Guangzhou 510222, China
Harmful algal blooms (HABs), such as dinoflagellate blooms, have adverse effects on coastal water environments, causing seafood contamination and aquaculture economic losses. Based on historical HAB records data (1983-2017) and phytoplankton data (1982-2008), field investigation and laboratory experiments on frequently bloomed dinoflagellate species, we analyzed the possible mechanisms of high frequency dinoflagellate blooms in Daya Bay, South China Sea. The HAB records data show that the proportion of dinoflagellate blooms increased from 15% before 1994 to 77.27% after 2011. The bloom occurred mostly in summer (57.58%) in Yaling Bay (76.92%). The species inducing dinoflagellate blooms tended to be singular over time, with high proportion of Scrippsiella trochoidea (42.86%-88.88%). Laboratory experiment and field investigation of S. trochoidea bloom showed that this species grew rapidly at 30℃ and 32.1℃ (r=0.47, P<0.05), respectively. Results indicate that temperature rise in Yaling Bay was affected by nearby nuclear plant effluent, which favored the S. trochoidea bloom. Coincidently, nearly 70% of S. trochoidea blooms occurred in about 7 days after local spring tide and strong wind (wind velocity >7 m/s), which disturbed the resting cysts in the sediment and bring them into surface layer. Taking into account of environmental parameters, algae source, and atmospheric conditions, the probable mechanism of S. trochoidea bloom could be explained. The cysts were resuspended by the spring tide or strong wind, germinated at the bottom layer, reproduced rapidly at higher temperature, and then aggregated in the inner bay (Yaling Bay), resulting the frequent S. trochoidea bloom. Considering the influences of global warming and human activities, it should be taken more attention that dinoflagellate blooms might increase along the coastal waters.
Key words:    harmful algal blooms|dinoflagellate|Daya Bay|Scrippsiella trochoidea   
Received: 2019-03-27   Revised: 2019-09-22
PDF (1083 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Yuan TIAN
Articles by Simin HU
Articles by Xianzhi LIN
Articles by Hui HUANG
Articles by Xingyu SONG
Articles by Yan YAN
Articles by Xuedong XIE
Articles by Tao LI
Articles by Sheng LIU
Adachi R. 1973. Red tide organisms and red tide. Fish Engineering, 9:31-36. (in Japanese)
Alkawri A A S, Ramaiah N. 2010. Spatio-temporal variability of dinoflagellate assemblages in different salinity regimes in the west coast of India. Harmful Algae, 9(2):153-162,
Backer L C, McGillicuddy Jr D J. 2006. Harmful algal blooms at the interface between coastal oceanography and human health. Oceanography, 19(2):94-106,
Beardall J, Stojkovic S, Larsen S. 2009. Living in a high CO2 world:Impacts of global climate change on marine phytoplankton. Plant Ecology & Diversity, 2(2):191-205,
Binder B J, Anderson D M. 1986. Green light-mediated photomorphogenesis in a dinoflagellate resting cyst.Nature, 322(6080):659-661,
Burkholder J M, Glasgow Jr H B. 1997. Pfiesteria piscicida and other Pfiesreria-like dinoflagellates:Behavior, impacts, and environmental controls. Limnology and Oceanography, 42(5):1 052-1 075,
Cai Z P, Huang W W, An M, Duan S S. 2009. Coupled effects of irradiance and iron on the growth of a harmful algal bloom-causing microalga Scrippsiella trochoidea. Acta Ecologica Sinica, 29(5):297-301,
Edwards M, Richardson A J. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch.Nature, 430(7002):881-884,
G�rate-Liz�rraga I, Band-Schmidt C J, L�pez-Cort�s D J, del Socorro Mu�et�n-G�mez M. 2009. Bloom of Scrippsiella trochoidea (Gonyaulacaceae) in a shrimp pond in the southwestern Gulf of California, Mexico. Marine Pollution Bulletin, 58(1):145-149,
Glibert P M, Berdalet E, Burford M A, Pitcher G C, Zhou M J. 2018. Global Ecology and Oceanography of Harmful Algal Blooms. Springer, Cham. p.1-461,
Godhe A, Narayanaswamy C, Klais R, Moorthy K S V, Ramesh R, Rai A, Reddy H R V. 2015. Long-term patterns of net phytoplankton and hydrography in coastal SE Arabian Sea:what can be inferred from genus level data? Estuarine, Coastal and Shelf Science, 162:69-75, 10.1016/j.ecss.2015.03.006.
Hallegraeff G M. 1992. Harmful algal blooms in the Australian region. Marine Pollution Bulletin, 25(5-8):186-190,
Hameed H A, Saburova M. 2015. First record of Scrippsiella trochoidea (Dinophyceae) in Shatt Al-Arab River(Southern Iraq). Marine Biodiversity Records, 8:e150,
Han W Y. 1998. Marine Chemistry in South China Sea. Science Press, Beijing. p.1-289. (in Chinese)
Han W Y, Ma K M. 1991. Study on the process of sea water exchang in Daya Bay. Marine Sciences, (2):64-67. (in Chinese with English abstract)
Hao Y J, Tang D L, Boicenco L, Wang S F. 2016. Environmental ecological response to increasing water temperature in the Daya Bay, Southern China in 1982-2012. Natural Resources, 7(4):184-192,
Hinder S L, Hays G C, Edwards M, Roberts E C, Walne A W, Gravenor M B. 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change, 2(4):271-275,
Huan Q L, Pang R S, Zhou Q L, Leng K M. 2016. Variation trends of nitrogen and phosphorus and the relationship with HABs in Shenzhen coastal waters. Marine Environmental Science, 35(6):908-914. (in Chinese with English abstract)
Huang X P, Huang L M, Tan Y H, Zhu L S. 2002. Relationship between red tide and environmental conditions in coastal waters. Marine Environmental Science, 21(4):63-69, Chinese with English abstract)
IPCC (Intergovernmental Panel on Climate Change). 2007.Climate Change 2007:the Physical Science Basis.Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge.
Jiang Z B, Liao Y B, Liu J J, Shou L, Chen Q Z, Yan X J, Zhu G H, Zeng J N. 2013. Effects of fish farming on phytoplankton community under the thermal stress caused by a power plant in a eutrophic, semi-enclosed bay:induce toxic dinoflagellate (Prorocentrum minimum) blooms in cold seasons. Marine Pollution Bulletin, 76(1-2):315-324,
Jones K J, Gowen R J. 1990. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuarine, Coastal and Shelf Science, 30(6):557-567,
Kang D J, Fringer O. 2010. On the calculation of available potential energy in internal wave fields. Journal of Physical Oceanography, 40(11):2 539-2 545,
Keys M, Tilstone G, Findlay H S, Widdicombe C E, Lawson T. 2018. Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel.Biogeosciences, 15(10):3 203-3 222,
Kim Y O, Han M S. 2000. Seasonal relationships between cyst germination and vegetative population of Scrippsiella trochoidea (Dinophyceae). Marine Ecology Progress Series, 204:111-118,
Knap A H, Michaels A, Close A R, Ducklow H, Dickson A G. 1996. Protocols for the Joint Global Ocean Flux Study(JGOFS) Core Measurements. UNESCO, Bergen.
Kumar P S, Kumaraswami M, Rao G D, Ezhilarasan P, Sivasankar R, Rao V R, Ramu K. 2018. Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea. Continental Shelf Research, 161:20-28,
Li L, L� S H, Cen J Y. 2019. Spatio-temporal variations of Harmful algal blooms along the coast of Guangdong, Southern China during 1980-2016. Journal of Oceanology and Limnology, 37(2):535-551,
Li T, Liu S, Huang L M, Huang H, Lian J S, Yan Y, Lin S J. 2011. Diatom to dinoflagellate shift in the summer phytoplankton community in a bay impacted by nuclear power plant thermal effluent. Marine Ecology Progress Series, 424:75-85,
Licea S, Zamudio M E, Luna R, Okolodkov Y, G�mez-Aguirre S. 2004. Toxic and harmful dinoflagellates in the southern Gulf of M�xico. In Steidinger K A, Landsberg J H, Tomas C R, Vargo G A eds. Harmful Algae 2002. Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO, St. Petersburg. p.380-382.
Lin G H, Dong Y R, Li K Q, Wang S P, Wang X L. 2017. The method to identity the key control factor of red tide:a case study of Bohai Sea. Periodical of Ocean University of China, 47(12):88-96, (in Chinese with English abstract)
Lin J N, Yan T, Zhang Q C, Wang Y F, Liu Q, Zhou M J. 2014.In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Marine Pollution Bulletin, 88(1-2):302-310,
Lin X, Zhang H, Huang B Q, Lin S J. 2012. Alkaline phosphatase gene sequence characteristics and transcriptional regulation by phosphate limitation in Karenia brevis (Dinophyceae). Harmful Algae, 17:14-24,
Lin Z X, Liang S H. 2002. Study and forecasting on red tide caused by marine physical factors. Mar. Environ. Sci., 21(2):1-5. (in Chinese with English abstract)
Liu D Y, Sun J, Zou J Z, Zhang J. 2005. Phytoplankton succession during a red tide of Skeletonema costatum in Jiaozhou Bay of China. Marine Pollution Bulletin, 50(1):91-94,
Lu D D, Goebel J. 2001. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu SP. nov. from the east china sea. Chinese Journal of Oceanology and Limnology, 19(4):337-344,
Mulholland M R, Morse R, Egerton T, Bernhardt P W, Filippino K C. 2018. Blooms of dinoflagellate mixotrophs in a lower Chesapeake Bay tributary:carbon and nitrogen uptake over diurnal, seasonal, and interannual timescales.Estuaries and Coasts, 41(6):1 744-1 765,
Qi Y Z, Zheng L, Wang R. 1997. The life cycle of Scrippsiella trochoidea and its physiol-ecological control. Oceanologia et Limnologia Sinica, 28(6):588-593. (in Chinese with English abstract)
Qian H L, Liang S, Qi Y Z. 2000. Study of the characteristics and the causes of formation on the red tides in coastal Guangdong sea. Ecologic Science, 19(3):8-16, (in Chinese with English abstract)
Shin H H, Li Z, Yoon Y H, Oh S J, Lim W A. 2017. Formation and germination of temporary cysts of Cochlodinium polykrikoides Margalef (Dinophyceae) and their ecological role in dense blooms. Harmful Algae, 66:57-64,
Smayda T J. 1997. Harmful algal blooms:their ecophysiology and general relevance to phytoplankton blooms in the sea.Limnology and Oceanography, 42(5):1 137-1 153,
Smayda T J, Reynolds C S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly.Journal of Sea Research, 49(2):95-106,
Sun J, Ning X R. 2005. Marine phytoplankton specific growth rate. Advances in Earth Science, 20(9):939-945, (in Chinese with English abstract)
Sun X X, Sun S, Zhao Z X, Shen Z L. 2011. Long-term changes in nutrient concentration and structure in the Jiaozhou Bay. Oceanologia et Limnologia Sinica, 42(5):662-669.(in Chinese with English abstract)
Tang D L, Kester D R, Wang Z D, Lian J S, Kawamura H. 2003. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China. Remote Sensing of Environment, 84(4):506-515,
Tang Y N. 2018. Distribution of Dinoflagellate Cysts in the Daya Bay and its Relations to Environmental Factors.University of Chinese Academy of Sciences, p.1-67. (in Chinese with English abstract)
Tang Y Z, Gobler C J. 2015. Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea:a potential mechanism contributing to the ubiquitous distribution of a harmful alga. Journal of Phycology, 51(2):298-309,
Tian Y, Li T, Hu S M, Xie X D, Liu S. 2020. Temporal and spatial characteristics of Harmful algal blooms in Guangdong coastal area. Marine Environmental Science, 39(1):1-8. (in Chinese with English abstract)
Townhill B L, Tinker J, Jones M, Pitois S, Creach V, Simpson S D, Dye S, Bear E, Pinnegar J K. 2018. Harmful algal blooms and climate change:exploring future distribution changes. ICES Journal of Marine Science, 75(6):1 882-1 893,
Wang C, Lin J, Chen P M, Zhang S Y. 2008. Numerical simulation on water exchange in Daya Bay. South China Fisheries Science, 4(4):8-15, (in Chinese with English abstract)
Wang C, Lin J, Chen P M, Zhang S Y. 2009. Numerical simulation of annual average wind's impact on water exchange in Daya Bay. Journal of Shanghai University, 18(3):351-358. (in Chinese with English abstract)
Wang Y S, Sun C C, Lou Z P, Wang H L, Mitchell B G, Wu M L, Sun Z X. 2011. Identification of water quality and benthos characteristics in Daya Bay, China, from 2001 to 2004. Oceanological and Hydrobiological Studies, 40(1):82-95,
Wang Z H, Qi Y Z, Jiang T J, Xu Z N. 2004. Vertical distribution of dinoflagellate resting cysts in recent sediments from Daya Bay, the south china sea. Acta Hydrobiologica Sinica, 28(5):504-510, (in Chinese with English abstract)
Wang Z H, Qi Y Z, Yang Y F. 2007. Cyst formation:an important mechanism for the termination of Scrippsiella trochoidea (Dinophyceae) bloom. Journal of Plankton Research, 29(2):209-218,
Wells M L, Trainer V L, Smayda T J, Karlson B S O, Trick C G, Kudela R M, Ishikawa A, Bernard S, WulffA, Anderson D M. 2015. Harmful algal blooms and climate change:learning from the past and present to forecast the future.Harmful Algae, 49:68-93,
Xiao W P, Liu X, Irwin A J, Laws E A, Wang L, Chen B Z, Zeng Y, Huang B Q. 2018. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Research, 128:206-216,
Xiao Y Z, Qi Y Z, Wang Z H, L� S H. 2001. The relationship between Scrippsiella trochoidea red tide and cysts in the Daya Bay. Marine Sciences/Monthly, 25(9):50-54, (in Chinese with English abstract)
Xiao Y Z, Wang Z H, Chen J F, L� S H, Qi Y Z. 2003. Seasonal dynamics of dinoflagellate cysts in sediments from Daya Bay, the South China Sea its relation to the bloom of Scrippsiella trochoidea. Acta Hydrobiologica Sinica, 27(4):372-377, (in Chinese with English abstract)
Xie Y H, Li T, Jian W J, Hu S M, Tian Y, Liu S. 2015. Influence of ocean warming on the community structure and photosynthetic efficiency of phytoplankton in Daya Bay.Journal of Tropical Oceanography, 34(2):24-31, (in Chinese with English abstract)
Xu N, L� S H, Chen J F, He L S, Xie L C, Qi Y Z. 2004. The influence of water temperature and salinity on the growth of Scrippsiella trochoidea. Marine Environmental Science, 23(3):36-38, (in Chinese with English abstract)
Xu N, Pang S J. 2012. Molecular identification and culture trials of three marine microalgae. Marine Sciences, 36(10):13-25. (in Chinese with English abstract)
Yin K D, Song X X, Liu S, Kan J J, Qian P Y. 2008. Is inorganic nutrient enrichment a driving force for the formation of red tides?:A case study of the dinoflagellate Scrippsiella trochoidea in an embayment. Harmful Algae, 8(1):54-59,
Yu J, Tang D L, Oh I S, Yao L J. 2007. Response of harmful algal blooms to environmental changes in Daya Bay, China. Terrestrial, Atmospheric and Oceanic Sciences Journal, 18(5):1 011-1 027,
Zhou Z X, Yu R C, Zhou M J. 2017. Resolving the complex relationship between harmful algal blooms and environmental factors in the coastal waters adjacent to the Changjiang River estuary. Harmful Algae, 62:60-72,
Copyright © Haiyang Xuebao