Cite this paper:
Lu WANG, Kuipeng XU, Xianghai TANG, Junhao WANG, Fanna KONG, Yunxiang MAO. Construction of high-density genetic linkage map of Pyropia yezoensis (Bangiales, Rhodophyta) and identification of red color trait QTLs in the thalli[J]. Journal of Oceanology and Limnology, 2021, 39(3): 1103-1117

Construction of high-density genetic linkage map of Pyropia yezoensis (Bangiales, Rhodophyta) and identification of red color trait QTLs in the thalli

Lu WANG1,3, Kuipeng XU1, Xianghai TANG1, Junhao WANG1, Fanna KONG1, Yunxiang MAO2,3
1 Key Laboratory of Marine Genetics and Breeding(Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
2 Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource(Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China;
3 Marine Biology and Biotechnology Laboratory, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266071, China
Abstract:
Pyropia yezoensis is an important macroalga because of its extensive global distribution and economic importance. Color is an important trait in the thalli of P. yezoensis, it is also an effective marker to identify the hybridization in genetic breeding. In this study, a high-density genetic linkage map was constructed based on high-throughput single nucleotide polymorphism (SNP) markers, and used for analyzing the quantitative trait loci (QTLs) of red color trait in the thalli of P. yezoensis. The conchospore undergoes meiosis to develop into an ordered tetrad, and each cell has a haploid phenotype and can grow into a single individual. Based on this theory, F1 haploid population was used as the mapping population. The map included 531 SNP markers, 394.57 cM long on average distance of 0.74 cM. Collinear analysis of the genetic linkage map and the physical map indicated that the coverage between the two maps was 79.42%. Furthermore, QTL mapping identified six QTLs for the chromosomal regions associated with the red color trait of the thalli. The value of phenotypic variance explained (PVE) by an individual QTL ranged from 4.71%-63.11%. And QTL qRed-1-1, with a PVE of 63.11%, was considered the major QTL. Thus, these data may provide a platform for gene and QTL fine mapping, and marker-assisted breeding in P. yezoensis in the future.
Key words:    Pyropia yezoensis|high-density genetic linkage map|quantitative trait loci (QTL) mapping|F1 haploid population|red pigment variant   
Received: 2020-05-04   Revised: 2020-06-29
Tools
PDF (3066 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Lu WANG
Articles by Kuipeng XU
Articles by Xianghai TANG
Articles by Junhao WANG
Articles by Fanna KONG
Articles by Yunxiang MAO
References:
Brand A, Borovsky Y, Meir S, Rogachev I, Aharoni A, Paran I. 2012. pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size. Planta, 235(3):579-588, https://doi.org/10.1007/s00425-011-1530-9.
Chai L G, Zhang J J, Lin G P, Wang Y, Xu F S. 2007.Construction of two DH populations and identification of chromosome ploidy in burley tobacco. Acta Tabacaria Sinica, 13(2):33-37, https://doi.org/10.3321/j.issn:1004-5708.2007.02.007. (in Chinese with English abstract)
Cheema J, Dicks J. 2009. Computational approaches and software tools for genetic linkage map estimation in plants. Briefings in Bioinformatics, 10(6):595-608, https://doi.org/10.1093/bib/bbp045.
Chen J X, Zhou H, Gu Y, Xia D, Wu B, Gao G J, Zhang Q L, He Y Q. 2019. Mapping and verification of grain shape QTLs based on high-throughput SNP markers in rice.Molecular Breeding, 39(3):42, https://doi.org/10.1007/s11032-019-0955-x.
Cheng L R, Chen X C, Jiang C H, Ma B, Ren M, Cheng Y Z, Liu D, Geng R M, Yang A G. 2019. High-density SNP genetic linkage map construction and quantitative trait locus mapping for resistance to cucumber mosaic virus in tobacco (Nicotiana tabacum L.). The Crop Journal, 7(4):539-547, https://doi.org/10.1016/j.cj.2018.11.010.
Choi J K, Sa K J, Park D H, Lim S E, Ryu S H, Park J Y, Park K J, Rhee H I, Lee M, Lee J K. 2019. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers. Genes & Genomics, 41(6):667-678, https://doi.org/10.1007/s13258-019-00813-x.
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics, 27(15):2 156-2 158, https://doi.org/10.1093/bioinformatics/btr330.
Davey J W, Hohenlohe P A, Etter P D, Boone J Q, Catchen J M, Blaxter M L. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7):499-510, https://doi.org/10.1038/nrg3012.
De Keyser E, Lootens P, Van Bockstaele E, De Riek J. 2013.Image analysis for QTL mapping of flower colour and leaf characteristics in pot azalea (Rhododendron simsii hybrids). Euphytica, 189(3):445-460, https://doi.org/10.1007/s10681-012-0809-7.
De Leon T B, Linscombe S, Subudhi P K. 2016. Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice, 9(1):52, https://doi.org/10.1186/s12284-016-0125-2.
Ding H C, Lv F, Wu H X, Yan X H. 2018. Selection and characterization of an improved strain produced by interspecies hybridization between Pyropia sp. from India and Pyropia haitanensis from China. Aquaculture, 491:177-183, https://doi.org/10.1016/j.aquaculture.2018.03.015.
Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D. 2004.Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theoretical and Applied Genetics, 109(4):827-838, https://doi.org/10.1007/s00122-004-1694-9.
Fei X G, Wang S J, Lu S. 1998. Red Algae Cell Engineering Breeding and Seedling. Marine Biotechnology. Shandong Science and Technology Press, Jinan, China. p.7-26. (in Chinese)
Frett T J, Reighard G L, Okie W R, Gasic K. 2014. Mapping quantitative trait loci associated with blush in peach[Prunus persica (L.) Batsch]. Tree Genetics & Genomes, 10(2):367-381, https://doi.org/10.1007/s11295-013-0692-y.
Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. 2011. A large maize (Zea mays L.) SNP genotyping array:development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome.PLoS One, 6(12):e28334, https://doi.org/10.1371/journal.pone.0028334.
He Y, Zhou W, Li J M, Shen S D. 2019. Study of mosaicism of Pyropia yezoensis. Marine Biology Research, 15(2):150-158, https://doi.org/10.1080/17451000.2019.1605183.
Heesch S, Cho G Y, Peters A F, Le Corguillé G, Falentin C, Boutet G, Coëdel S, Jubin C, Samson G, Corre E, Coelho S M, Cock J M. 2010. A sequence-tagged genetic map for the brown alga Ectocarpus siliculosus provides large-scale assembly of the genome sequence. New Phytologist, 188(1):42-51, https://doi.org/10.1111/j.1469-8137.2010.03273.x.
Hu Y M. 2006. The history and actuality of Porphyra's breeding.Journal of Ningbo Institute of Education, 8(4):22-26, https://doi.org/10.3969/j.issn.1009-2560.2006.04.007. (in Chinese with English abstract)
Huang L B, Yan X H. 2019. Construction of a genetic linkage map in Pyropia yezoensis (Bangiales, Rhodophyta) and QTL analysis of several economic traits of blades. PLoS One, 14(3):e0209128, https://doi.org/10.1371/journal.pone.0209128.
Jiang H, Ding H C, Yan X H. 2018. Selection and characterization of an improved strain (A-18) by hybridization recombinant in Pyropia yezoensis(Bangiales, Rhodophyta). Acta Oceanologica Sinica, 40(2):95-103, https://doi.org/10.3969/j.issn.0253-4193.2018.02.010. (in Chinese with English abstract)
Johnson R. 2003. Marker-assisted selection. In:Janick J ed.Plant Breeding Reviews. John Wiley & Sons, New York, p.293-309, https://doi.org/10.1002/9780470650240.ch13.
Kui L W, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T K, Espley R V, Hellens R P, Allan A C. 2010.An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 10(1):50, https://doi.org/10.1186/1471-2229-10-50.
Kumawat G, Raje R S, Bhutani S, Pal J K, Mithra A S V C R, Gaikwad K, Sharma T R, Singh N K. 2012. Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.). BMC Genetics, 13(1):84, https://doi.org/10.1186/1471-2156-13-84.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14):1 754-1 760, https://doi.org/10.1093/bioinformatics/btp324.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16):2 078-2 079, https://doi.org/10.1093/bioinformatics/btp352.
Li H, Hearne S, Bänziger M, Li Z, Wang J. 2010. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity, 105(3):257-267, https://doi.org/10.1038/hdy.2010.56.
Liu J, Shikano T, Leinonen T, Cano J M, Li M H, Merilä J. 2014. Identification of major and minor QTL for ecologically important morphological traits in threespined sticklebacks (Gasterosteus aculeatus). Genes, Genomes, Genetics, 4(4):595-604, https://doi.org/10.1534/g3.114.010389.
Liu K Y, Xu H, Liu G, Guan P F, Zhou X Y, Peng H R, Yao Y Y, Ni Z F, Sun Q X, Du J K. 2018. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).Theoretical and Applied Genetics, 131(4):839-849, https://doi.org/10.1007/s00122-017-3040-z.
Liu M J, Huang L B, Yan X H. 2015. Isolation and characterization of the improved strain HW-4 by intraspecific hybridization in Pyropia yezoensis. Journal of Fishery Sciences of China, 22(1):33-43, https://doi.org/10.3724/SP.J.1118.2015.00213. (in Chinese with English abstract)
Lowry D B, Taylor S H, Bonnette J, Aspinwall M J, Asmus A L, Keitt T H, Tobias C M, Juenger T E. 2015. QTLs for biomass and developmental traits in Switchgrass(Panicum virgatum). Bioenergy Research, 8(4):1 856-1 867, https://doi.org/10.1007/s12155-015-9629-7.
Ma L L, Guan Z R, Zhang Z T, Zhang X X, Zhang Y L, Zou C Y, Peng H W, Pan G T, Lee M, Shen Y O, Lübberstedt T. 2018. Identification of quantitative trait loci for leaf-related traits in an IBM Syn10 DH maize population across three environments. Plant Breeding, 137(2):127-138, https://doi.org/10.1111/pbr.12566.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9):1 297-1 303, https://doi.org/10.1101/gr.107524.110.
Migita S. 1967. Cytological studies on Porphyra yezoensis Ueda. Nagasaki University Bulletin of the Faculty of Fisheries, 24:55-64, http://naosite.lb.nagasaki-u.ac.jp/dspace/handle/10069/31358.
Miura A, Shin J A. 1989. Crossbreeding in cultivars of Porphyra yezoensis (Bangiales, Rhodophyta)-Preliminary report. The Korean Journal of Phycology, 4(2):207-211, https://link.springer.com/article/10.1023%2FA:1022998823920.
Mo H D. 2003. Look back and reflect on genetic researches of variation for quantitative traits:a challenge for quantitative genetics in post-genome ear. Journal of Yangzhou University (Agricultural and Life Sciences Edition), 24(2):24-31. (in Chinese with English abstract)
Moose S P, Mumm R H. 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147(3):969-977, https://doi.org/10.1104/pp.108.118232.
Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K. 2013. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One, 8(3):e57122, https://doi.org/10.1371/journal.pone.0057122.
Niwa K, Yamamoto T, Furuita H, Abe T. 2011. Mutation breeding in the marine crop Porphyra yezoensis(Bangiales, Rhodophyta):cultivation experiment of the artificial red mutant isolated by heavy-ion beam mutagenesis. Aquaculture, 314(1-4):182-187, https://doi.org/10.1016/j.aquaculture.2011.02.007.
Niwa K. 2010. Genetic analysis of artificial green and red mutants of Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Aquaculture, 308(1-2):6-12, https://doi.org/10.1016/j.aquaculture.2010.08.007.
Ohme M, Kunifuji Y, Miura A. 1986. Cross experiments of the color mutants in Porphyra yezoensis Ueda. Journal of Applied Phycology, 34:101-106, https://www.oalib.com/references/10851746.
Ohme M, Miura A. 1988. Tetrad analysis in conchospore germlings of Porphyra yezoensis (Rhodophyta, Bangiales). Plant Science, 57(2):135-140, https://doi.org/10.1016/0168-9452(88)90079-9.
Qing D J, Dai G X, Zhou W Y, Huang S S, Liang H F, Gao L J, Gao J, Huang J, Zhou M, Chen R T, Chen W W, Huang F K, Deng G F. 2019. Development of molecular marker and introgression of Bph3 into elite rice cultivars by marker-assisted selection. Breeding Science, 69(1):40-46, https://doi.org/10.1270/jsbbs.18080.
Randhawa M S, Bains N S, Sohu V S, Chhuneja P, Trethowan R M, Bariana H S, Bansal U. 2019. Marker assisted transfer of stripe rust and stem rust resistance genes into four wheat cultivars. Agronomy, 9(9):497, https://doi.org/10.3390/agronomy9090497.
Ribaut J M, De Vicente M C, Delannay X. 2010. Molecular breeding in developing countries:challenges and perspectives. Current Opinion in Plant Biology, 13(2):213-218, https://doi.org/10.1016/j.pbi.2009.12.011.
Shan T F, Pang S J, Li J, Li X, Su L. 2015. Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida(Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing.BMC Genomics, 16(1):902, https://doi.org/10.1186/s12864-015-2184-y.
Shen Y S, Yang Y, Xu E S, Ge X H, Xiang Y, Li Z Y. 2018. Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed(Brassica napus L.). Theoretical and Applied Genetics, 131(1):67-78, https://doi.org/10.1007/s00122-017-2986-1.
Sitonik C A, Suresh L M, Beyene Y, Olsen M S, Makumbi D, Oliver K, Das B, Bright J M, Mugo S, Crossa J, Tarekegne A, Prasanna B M, Gowda M. 2019. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics, 132(8):2 381-2 399, https://doi.org/10.1007/s00122-019-03360-x.
Sooriyapathirana S S, Khan A, Sebolt A M, Wang D C, Bushakra J M, Kui L W, Allan A C, Gardiner S E, Chagné D, Iezzoni A F. 2010. QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit(Prunus avium L.). Tree Genetics & Genomes, 6(6):821-832, https://doi.org/10.1007/s11295-010-0294-x.
Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma C X, Zeng H P, Xu C H, Song J, Huang L, Wang C M, Shi J J, Wang R, Zheng X H, Lu C Y, Wang X W, Zheng H K. 2013. SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 8(3):e58700, https://doi.org/10.1371/journal.pone.0058700.
Sutherland J E, Lindstrom S C, Nelson W A, Brodie J, Lynch M D J, Hwang M S, Choi H G, Miyata M, Kikuchi N, Oliveira M C, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller K M. 2011. A new look at an ancient order:generic revision of the Bangiales (Rhodophyta).Journal of Phycology, 47(5):1 131-1 151, https://doi.org/10.1111/j.1529-8817.2011.01052.x.
Tao Y F, Liu Q C, Wang H H, Zhang Y J, Huang X Y, Wang B B, Lai J S, Ye J R, Liu B S, Xu M L. 2013. Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease. BMC Plant Biology, 13(1):145, https://doi.org/10.1186/1471-2229-13-145.
Van Ooijen J W, Kyazma B V. 2009. MapQTL 6:Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species. Kyazma BV, Wageningen, Netherlands.
Wang B B, Liu H, Liu Z P, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. 2018a. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biology, 18(1):17, https://doi.org/10.1186/s12870-018-1233-5.
Wang C N, Qiao A H, Fang X F, Sun L, Gao P, Davis A R, Liu S, Luan F S. 2019. Fine mapping of lycopene content and flesh color related gene and development of molecular marker-assisted selection for flesh color in watermelon(Citrullus lanatus). Frontiers in Plant Science, 10:1 240, https://doi.org/10.3389/fpls.2019.01240.
Wang S J, Zheng Y Z, Ma L B, Xu P, Zhu J Y. 2000. Gammarays induction of mutation in conchocelis of Porphyra yezoensis. Chinese Journal of Oceanology and Limnology, 18(1):47, https://doi.org/10.1007/BF02842541.
Wang S, Basten C, Zeng Z. 2007. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.
Wang X L, Chen Z H, Li Q Y, Zhang J, Liu S, Duan D L. 2018b. High-density SNP-based QTL mapping and candidate gene screening for yield-related blade length and width in Saccharina japonica (Laminariales, Phaeophyta). Scientific Reports, 8(1):13 591, https://doi.org/10.1038/s41598-018-32015-y.
Xu D H, Sun R F, Zhang Y G, Yuan Y X, Kang J G, Wu J, Zhang H, Song X F, Li X N, Song Y M, Wang X W. 2007.Mapping and analysis of QTL related to leaf color in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Acta Horticulturae Sinica, 34(1):99-104, https://doi.org/10.3321/j.issn:0513-353X.2007.01.020. (in Chinese with English abstract)
Xu K P, Yu X Z, Tang X H, Kong F N, Mao Y X. 2019.Organellar genome variation and genetic diversity of Chinese Pyropia yezoensis. Frontiers in Marine Science, 6:756, https://doi.org/10.3389/fmars.2019.00756.
Xu Y, Huang L, Ji D H, Chen C S, Zheng H K, Xie C T. 2015.Construction of a dense genetic linkage map and mapping quantitative trait loci for economic traits of a doubled haploid population of Pyropia haitanensis (Bangiales, Rhodophyta). BMC Plant Biology, 15(1):228, https://doi.org/10.1186/s12870-015-0604-4.
Yabu H, Tokida J. 1963. Mitosis in Porphyra. Hokkaido University Bulletin of the Faculty of Fisheries, 14(3):131-136, https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/23185/1/14(3)_P131-136.pdf.
Yabu H. 1969. Observation on chromosomes in some species of Porphyra. Hokkaido University Bulletin of the Faculty of Fisheries, 19(4):239-243, https://link.springer.com/article/10.1007/s10811-007-9235-y.
Yan X H, Aruga Y. 2000. Genetic analysis of artificial pigmentation mutants in Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Phycological Research, 48(3):177-187, https://doi.org/10.1046/j.1440-1835.2000.00203.x.
Yan X H, Fujita Y, Aruga Y. 2000. Induction and characterization of pigmentation mutants in Porphyra yezoensis(Bangiales, Rhodophyta). Journal of Applied Phycology, 12(1):69-81, https://doi.org/10.1023/A:1008129119065.
Yan X H, Fujita Y, Aruga Y. 2004. High monosporeproducing mutants obtained by treatment with MNNG in Porphyra yezoensis Ueda (Bangiales, Rhodophyta).Hydrobiologia, 512(1-3):133-140, https://doi.org/10.1023/B:Hydr.0000020318.00749.2d.
Yan X H, Liang Z Q, Song W L, Huang J, Ma P, Aruga Y. 2005. Induction and isolation of artificial pigmentation mutants in Porphyra haitanensis Chang et Zheng(Bangiales, Rhodophyta). Journal of Fisheries of China, 29(2):166-172, https://doi.org/10.3321/j.issn:1000-0615.2005.02.005. (in Chinese with English abstract)
Yang G P, Sun Y, Shi Y Y, Zhang L N, Guo S S, Li B J, Li X J, Li Z L, Cong Y Z, Zhao Y S, Wang W Q. 2009.Construction and characterization of a tentative amplified fragment length polymorphism-simple sequence repeat linkage map of Laminaria (Laminariales, Phaeophyta).Journal of Phycology, 45(4):873-878, https://doi.org/10.1111/j.1529-8817.2009.00720.x.
Yu Y, Zhang X J, Li F H, Xiang J H. 2011. Strategy of whole genomic selection breeding and its application prospect in aquaculture. Journal of Fishery Sciences of China, 18(4):936-943, https://doi.org/10.3724/SP.J.1118.2011.00935.(in Chinese with English abstract)
Zeng Z B. 1994. Precision mapping of quantitative trait loci.Genetics, 136(4):1 457-1 468.
Zhang W J, Lukaszewski A J, Kolmer J, Soria M A, Goyal S, Dubcovsky J. 2005. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theoretical and Applied Genetics, 111(3):573-582, https://doi.org/10.1007/s00122-005-2048-y.
Zhu H Q, Zhang X G, Xue Q Z. 2004. Developing practicable system of chromosomal doubling for the construction of doubled haploid population in tobacco. Molecular Plant Breeding, 2(5):643-648, https://doi.org/10.3969/j.issn.1672-416X.2004.05.007. (in Chinese with English abstract)
Copyright © Haiyang Xuebao