Cite this paper:
Xuekai HAN, Yuyu ZHENG, Chaoling DAI, Hu DUAN, Meirong GAO, Md Rayhan ALI, Liying SUI. Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana[J]. Journal of Oceanology and Limnology, 2021, 39(3): 979-988

Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana

Xuekai HAN, Yuyu ZHENG, Chaoling DAI, Hu DUAN, Meirong GAO, Md Rayhan ALI, Liying SUI
Asian Regional Artemia Reference Center, Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
Microplastics pollution and seawater temperature rise have been the major environmental issues, threatening the survival and biodiversity of marine organisms. This study evaluated the combined effect of temperature and polystyrene microplastics (MP) on Artemia, a filter-feeding crustacean that is widely used for environmental toxicology studies. Brine shrimp Artemia franciscana were exposed to three MP concentrations (0, 0.2, and 2.0 mg/L) and three temperatures (22, 26, and 30 ℃) for 14 d. In general, higher MP concentration and temperature led to a decreased survival rate and growth. Two-way ANOVA analysis indicated that the survival rate of Artemia was significantly impacted by both MP concentration and temperature (P<0.05), but there was no significant interaction between two factors (P>0.05). Growth of Artemia was significantly impacted by temperature (P<0.05), and with a significant interaction between two factors (P<0.05). Furthermore, the enzymatic activity, intestinal histological analyses, and immune gene expression were determined for Artemia reared at 30 ℃ with three MP concentrations (0, 0.2, and 2.0 mg/L). The results showed that 2.0-mg/L MP resulted in reduced Artemia intestinal microvilli and exfoliated epithelia cells, significantly increased acid phosphatase (ACP) activity (P<0.05) and immunerelated gene ADRA1B and CREB3 expression, revealing that higher MP concentration could induce oxidative and immunological stress on Artemia at 30 ℃. Overall, our study suggests that MP and temperature have combined adverse effect on Artemia, especially at relatively high temperature and polystyrene MP concentration. These findings are important to understand the potential ecological risks posed by these two factors on the organisms in marine environment.
Key words:    Artemia franciscana|combined effect|microplastics|temperature   
Received: 2020-03-24   Revised: 2020-05-18
PDF (1086 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Xuekai HAN
Articles by Yuyu ZHENG
Articles by Chaoling DAI
Articles by Hu DUAN
Articles by Meirong GAO
Articles by Md Rayhan ALI
Articles by Liying SUI
Andrady A L. 2011. Microplastics in the marine environment.Marine Pollution Bulletin, 62(8):1 596-1 605,
Bagnyukova T V, Vasylkiv O Y, Storey K B, Lushchak V I. 2005. Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Research, 1052(2):180-186,
Bakir A, O'Connor I A, Rowland S J, Hendriks A J, Thompson R C. 2016. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environmental Pollution, 219:56-65,
Barber B J, Blake N J. 2006. Reproductive physiology. In:Shumway S E, Parsons G J eds. Scallops:Biology, Ecology and Aquaculture. Elsevier, Amsterdam. 59pp,
Barboza L G A, Vieira L R, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L. 2018a. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquatic Toxicology, 195:49-57,
Barboza L G A, Vieira L R, Guilhermino L. 2018b. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax):changes in behavioural responses and reduction of swimming velocity and resistance time. Environmental Pollution, 236:1 014-1 019,
Batel A, Linti F, Scherer M, Erdinger L, Braunbeck T. 2016.Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment:CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 35(7):1 656-1 666,
Bergami E, Pugnalini S, Vannuccini M L, Manfra L, Faleri C, Savorelli F, Dawson K A, Corsi I. 2017. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquatic Toxicology, 189:159-169,
Besseling E, Wang B, Lürling M, Koelmans A A. 2014.Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48(20):12 336-12 343,
Bhuvaneshwari M, Thiagarajan V, Nemade P, Chandrasekaran N, Mukherjee A. 2018. Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina:effect of dietary and waterborne exposure. Environmental Research, 160:39-46, 2017.09.022.
Brierley A S, Kingsford M J. 2009. Impacts of climate change on marine organisms and ecosystems. Current Biology, 19(14):R602-R614,
Browne M A, Dissanayake A, Galloway T S, Lowe D M, Thompson R C. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13):5 026-5 031,
Browne R A, Wanigasekera G. 2000. Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. Journal of Experimental Marine Biology and Ecology, 244(1):29-44,
Chen W H, Ge X M, Wang W W, Yu J, Hu S N. 2009. A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics, 10:52,
Cole M, Lindeque P K, Fileman E, Clark J, Lewis C, Halsband C, Galloway T S. 2016. Microplastics alter the properties and sinking rates of zooplankton faecal pellets.Environmental Science & Technology, 50(6):3 239-3 246,
Cole M, Lindeque P, Fileman E, Halsband C, Galloway T S. 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology, 49(2):1 130-1 137,
Crain C M, Kroeker K, Halpern B S. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11(12):1 304-1 315,
Ekonomou G, Lolas A, Castritsi-Catharios J, Neofitou C, Zouganelis G D, Tsiropoulos N, Exadactylos A. 2019. Mortality and effect on growth of Artemia franciscana exposed to two common organic pollutants. Water, 11(8):1614,
Eriksen M, Lebreton L C M, Carson H S, Thiel M, Moore C J, Borerro J C, Galgani F, Ryan P G, Reisser J. 2014. Plastic pollution in the world's oceans:more than 5 trillion plastic pieces weighing over 250,000 tons afloat at Sea. PLoS One, 9(12):e111913,
Gunasekara R A Y S A, Rekecki A, Cornillie P, Cornelissen M, Sorgeloos P, Simoens P, Bossier P, Van den Broeck W. 2011. Morphological characteristics of the digestive tract of gnotobiotic Artemia franciscana nauplii.Aquaculture, 321(1-2):1-7,
Hou L, Wang Y, Zou X Y. 2000. Expression characterizations of alkaline phosphatase (ALP) and acid phosphatase(ACP) isozymic genes of bisexual Artemia populations from China. Donghai Marine Science, 18(4):22-28. (in Chinese)
Ighodaro O M, Akinloye O A. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX):their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4):287-293,
Irwin S, Wall V, Davenport J. 2007. Measurement of temperature and salinity effects on oxygen consumption of Artemia franciscana K., measured using fibre-optic oxygen microsensors. Hydrobiologia, 575:109-115,
Jabeen K, Su L, Li J N, Yang D Q, Tong C F, Mu J L, Shi H H. 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221:141-149,
Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223):768-771,
Jemec A, Horvat P, Kunej U, Bele M, Kržan A. 2016. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution, 219:201-209,
Jeong C B, Won E J, Kang H M, Lee M C, Hwang D S, Hwang U K, Zhou B S, Souissi S, Lee S J, Lee J S. 2016.Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont rotifer (Brachionus koreanus).Environmental Science & Technology, 50(16):8 849-8 857,
Kiss T. 2010. Apoptosis and its functional significance in molluscs. Apoptosis, 15(3):313-321,
Lavens P, Sorgeloos P. 1996. Manual on the Production and Use of Live Food for Aquaculture. FAO, Rome, 172p.
Lee K W, Shim W J, Kwon O Y, Kang J H. 2013. Sizedependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental Science & Technology, 47(19):11 278-11 283,
Li J N, Green C, Reynolds A, Shi H H, Rotchell J M. 2018.Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environmental Pollution, 241:35-44, 2018.05.038.
Lusher A. 2015. Microplastics in the marine environment:distribution, interactions and effects. In:Bergmann M, Gutow L, Klages M eds. Marine Anthropogenic Litter.Springer, Cham. p.245-307,
Manfra L, Savorelli F, Di Lorenzo B, Libralato G, Comin S, Conti D, Floris B, Francese M, Gallo M L, Gartner I, Guida M, Leoni T, Marino G, Martelli F, Palazzi D, Prato E, Righini P, Rossi E, Volpi G A, Migliore L. 2015.Intercalibration of ecotoxicity testing protocols with Artemia franciscana. Ecological Indicators, 57:41-47,
Martins A, Guilhermino L. 2018. Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus.Science of the Total Environment, 631-632:421-428,
Minetto D, Libralato G, Marcomini A, Volpi Ghirardini A. 2017.Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana.Science of the Total Environment, 579:1 379-1 386,
Pampanin D M, Loriano B, Carotenuto L, Marin M G. 2002.Air exposure and functionality of Chamelea gallina haemocytes:effects on haematocrit, adhesion, phagocytosis and enzyme contents. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 131(3):605-614,
Peixoto D, Amorim J, Pinheiro C, Oliva-Teles L, Varó I, Rocha R D M, Vieira M N. 2019. Uptake and effects of different concentrations of spherical polymer microparticles on Artemia franciscana. Ecotoxicology and Environmental Safety, 176:211-218, 2019.03.100.
Ping C C, Hang K K, Yan J D. 2011. CREB3 subfamily transcription factors are not created equal:recent insights from global analyses and animal models. Cell & Bioscience, 1(1):6,
Place S P, O'Donnell M J, Hofmann G E. 2008. Gene expression in the intertidal mussel Mytilus californianus:physiological response to environmental factors on a biogeographic scale. Marine Ecology Progress Series, 356:1-14,
PlasticsEurope. 2017. An analysis of European plastics production, demand and waste data. Plastics Europe Association of Plastics Manufacturers, Brussels, Belgium. 44p,
Rajalakshmi S, Mohandas A. 2005. Copper-induced changes in tissue enzyme activity in a freshwater mussel.Ecotoxicology and Environmental Safety, 62(1):140-143,
Rodd A L, Creighton M A, Vaslet C A, Rangel-Mendez J R, Hurt R H, Kane A B. 2014. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. Environmental Science & Technology, 48(11):6 419-6 427,
Rotini A, Gallo A, Parlapiano I, Berducci M T, Boni R, Tosti E, Prato E, Maggi C, Cicero A M, Migliore L, Manfra L. 2018. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Ecotoxicology and Environmental Safety, 147:852-860,
Sarkheil M, Johari S A, An H J, Asghari S, Park H S, Sohn E K, Yu I J. 2018. Acute toxicity, uptake, and elimination of zinc oxide nanoparticles (ZnO NPs) using saltwater microcrustacean, Artemia franciscana. Environmental Toxicology and Pharmacology, 57:181-188,
Secretariat of the Convention on Biological Diversity and Scientific and Technical Advisory Panel GEF. 2012.Impacts of Marine Debris on Biodiversity:current status and potential solutions. Convention on Biological Diversity, Montreal. 61p.
Shen J H, Zhou S F, Dong Y L, Cui Y L. 2007. Analysis on the status of surface temperature structure of the East China Sea and partial Yellow Sea in 2006. Marine Fisheries (in Chinese), 29(2):179-185.
Tressel S L, Koukos G, Tchernychev B, Jacques S L, Covic L, Kuliopulos A. 2011. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. In:Langel Ü ed. Cell-Penetrating Peptides:Methods and Protocols. Humana Press, New York. p.259-275,
Vannuccini M L, Grassi G, Leaver M J, Corsi I. 2015. Combination effects of nano-TiO2 and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax.Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 176-177:71-78,
Varó I, Perini A, Torreblanca A, Garcia Y, Bergami E, Vannuccini M L, Corsi I. 2019. Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Science of the Total Environment, 675:570-580,
Wang J D, Tan Z, Peng J P, Qiu Q X, Li M M. 2016. The behaviors of microplastics in the marine environment.Marine Environmental Research, 113:7-17,
Wang Y, Zhang D, Zhang M X, Mu J L, Ding G H, Mao Z, Cao Y F, Jin F, Cong Y, Wang L J, Zhang W W, Wang J Y. 2019. Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica. Environmental Pollution, 244:715-722,
Wright S L, Thompson R C, Galloway T S. 2013. The physical impacts of microplastics on marine organisms:a review.Environmental Pollution, 178:483-492,
Zhang Y L, Wang D, Zhang Z, Wang Z P, Zhang D C, Yin H. 2018. Transcriptome analysis of Artemia sinica in response to Micrococcus lysodeikticus infection. Fish & Shellfish Immunology, 81:92-98,
Copyright © Haiyang Xuebao