Cite this paper:
Marija PEĆIĆ, Slađana POPOVIĆ, Vesna MILUTINOVIĆ, Gordana SUBAKOV SIMIĆ, Ivana TRBOJEVIĆ, Dragana PREDOJEVIĆ. Efficiency of phosphorus accumulation by plankton, periphyton developed on submerged artificial substrata and metaphyton: in-situ observation in two shallow ponds[J]. Journal of Oceanology and Limnology, 2021, 39(3): 928-945

Efficiency of phosphorus accumulation by plankton, periphyton developed on submerged artificial substrata and metaphyton: in-situ observation in two shallow ponds

Marija PEĆIĆ1, Slađana POPOVIĆ2, Vesna MILUTINOVIĆ3, Gordana SUBAKOV SIMIĆ1, Ivana TRBOJEVIĆ1, Dragana PREDOJEVIĆ1
1 Institute of Botany and Botanical Garden ‘Jevremovac’, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia;
2 Institute of Chemistry, Technology and Metallurgy, Scientific Institution, National Institute, Center for Ecology and Technoeconomics, University of Belgrade, Belgrade 11000, Serbia;
3 Institute of Public Health of Belgrade, Belgrade 11000, Serbia
Abstract:
Phosphorus overenrichment of shallow ponds prevailing in wetlands leads to their eutrophication causing the collapse of those vulnerable habitats. The potential of phosphorus accumulation by periphyton developed on artificial substrata has been investigated in two shallow ponds (Baračka and Široki Rit) in northwest Serbia and compared to the same ability of plankton and metaphyton. The periphyton substrate carrier has been submerged from May to October. Both continuously (CS) and monthly developed (MS) periphyton were sampled. Autotrophic component of all investigated communities has been qualitatively assessed. Maximum accumulation of only 14.7 mg TP/m2 was recorded in three-month exposed periphyton CS. MS exposed from July to August reached maximal 12.7 mg TP/m2. Plankton community that was characterized by more diverse and abundantly developed algal component was more effective in phosphorus accumulation (0.7 mg/g dry weight) in comparison with dominantly inorganic and diatom-dominated periphyton in Baračka. Unstable conditions caused by recent revitalization (dredging organic matter and mud from pond basin—redigging) as well as rapid desiccation of Široki Rit disabled making an unambiguous conclusion about the efficiency of phosphorus accumulation among different communities, but suggested slight potential of phosphorus harvesting by metaphyton in this pond. Due to the shorter exposure time that brings the reduced risk of unpredictable changes in the ecosystem, as well as the considerable amount of accumulated phosphorus, large-scale application of one-month exposed periphyton developed on artificial substrates would be more advisable for phosphorus harvesting in nutrient affected shallow ponds.
Key words:    periphyton|phosphorus accumulation|shallow ponds|(phyto)plankton|metaphyton|eutrophication   
Received: 2020-03-07   Revised: 2020-04-10
Tools
PDF (2229 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Marija PEĆIĆ
Articles by Slađana POPOVIĆ
Articles by Vesna MILUTINOVIĆ
Articles by Gordana SUBAKOV SIMIĆ
Articles by Ivana TRBOJEVIĆ
Articles by Dragana PREDOJEVIĆ
References:
Addinsoft. 2020. XLSTAT statistical and data analysis solution. New York, USA, https://www.xlstat.com.
Adey W, Luckett C, Jensen K. 1993. Phosphorus removal from natural waters using controlled algal production.Restoration Ecology, 1(1):29-39, https://doi.org/10.1111/j.1526-100X.1993.tb00006.x.
Analytical Methods Committee. 1960. Methods for the destruction of organic matter. The Analyst, 85(1014):643-656.
APHA. 1995. Standard Methods for the Examination of Water and Wastewater. 19th ed. Washington, DC:American Public Health Association Inc.
Arar E J. 1997. Method 446.0:In Vitro Determination of Chlorophylls a, b, c1+ c2 and Pheopigments in Marine and Freshwater Algae by Visible Spectrophotometry. National Exposure Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency Cincinnati, Ohio.
Azim M E, Beveridge M C M, Van Dam A A, Verdegem M C J. 2005. Periphyton and aquatic production:an introduction. CABI International, Wallingford, UK, 352p.
Bormans M, Maršálek B, Jančula D. 2016. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms:a review. Aquatic Ecology, 50(3):407-422, https://doi.org/10.1007/s10452-015-9564-x.
Briggs A P. 1922. A modification of the Bell-Doisy phosphate method. The Journal of Biological Chemistry, 53(1):13-16.
Cao J X, Hong X X, Pei G F. 2014. Removal and retention of phosphorus by periphyton from wastewater with high organic load. Water Science and Technology, 70(1):62-69, https://doi.org/10.2166/wst.2014.195.
Cardinale B J. 2011. Biodiversity improves water quality through niche partitioning. Nature, 472(7341):86-89, https://doi.org/10.1038/nature09904.
Carlson R E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22(2):361-369, https://doi.org/10.4319/Lo.1977.22.2.0361.
Carpenter S R, Christensen D L, Cole J J, Cottingham K L, He X, Hodgson J R, Kitchell J F, Knight S E, Pace M L, Post D M, Schindler D E, Voichick N. 1995. Biological control of eutrophication in lakes. Environmental Science and Technology, 29(3):784-786.
CEN. EN 15204:2008 Water quality-Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique).
D'Aiuto P E, Patt J M, Alban J P, Shatters R G, Evens T J. 2015. Algal turf scrubbers:Periphyton production and nutrient recovery on a South Florida citrus farm.Ecological Engineering, 75:404-412, https://doi.org/10.1016/j.ecoleng.2014.11.054.
Dodds W K. 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 39(5):840-849, https://doi.org/10.1046/j.1529-8817.2003.02081.x.
Drake W M, Scott J T, Evans-White M, Haggard B, Sharpley A, Rogers C W, Grantz E M. 2012. The effect of periphyton stoichiometry and light on biological phosphorus immobilization and release in streams. Limnology, 13(1):97-106, https://doi.org/10.1007/s10201-011-0359-z.
Drenner R W, Day D J, Basham S J, Smith D J, Jensen S I. 1997. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water. Ecological Applications, 7(2):381-390, https://doi.org/10.1890/1051-0761(1997)007[0381:EWTSFR]2.0.CO;2.
Ettl H. 1978. Xanthophyceae. 1. Teil. In:Ettl H, Gerloff J, Heynig H eds. Süßwasserflora von Mitteleuropa. Gustav Fischer, Jena.
Francoeur N S, Rier T S, Whorley B S. 2013. Methods for sampling and analyzing wetland algae. In:Anderson J, Davis C eds. Wetland techniques. Springer, Dordrecht, https://doi.org/10.1007/978-94-007-6931-1_1.
Friebele E S, Correll D L, Faust M A. 1978. Relationship between phytoplankton cell size and the rate of orthophosphate uptake:in situ observations of an estuarine population. Marine Biology, 45(1):39-52, https://doi.org/10.1007/BF00388976.
Guzzon A, Bohn A, Diociaiuti M, Albertano P. 2008. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Research, 42(16):4 357-4 367, https://doi.org/10.1016/j.watres.2008.07.029.
He H, Luo X G, Jin H, Gu J, Jeppesen E, Liu Z W, Li K Y. 2017. Effects of exposed artificial substrate on the competition between phytoplankton and benthic algae:implications for shallow lake restoration. Water, 9(1):24, https://doi.org/10.3390/w9010024.
Hillebrand H, Dürselen C D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2):403-424, https://doi.org/10.1046/j.1529-8817.1999.3520403.x.
Ho Y B. 1979. Chemical composition studies on some aquatic macrophytes in three Scottish Lochs. I. Chlorophyll, ash, carbon, nitrogen and phosphorus. Hydrobiologia, 63(2):161-166, https://doi.org/10.1007/BF00030079.
Huber-Pestalozzi G, Komárek J, Fott B. 1983. Das phytoplankton des Süβwasser. Band XVI, 7. Teil, 1.Hälfte. Chlorophyceae, ordnung:chlorococcales. In:Die Binnengawässer, Elster H J, Ohle W eds. E.Schweizerbartsche Verlagsbuchhandung, Stuttgart.
IUCN, WCMC. 1994. Guidelines for Protected Area Management Categories. IUCN, Gland, Switzerland.
Jacoby J M. 1987. Alterations in periphyton characteristics due to grazing in a Cascade foothill stream. Freshwater Biology, 18(3):495-508, https://doi.org/10.1111/j.1365-2427.1987.tb01334.x.
Janse J H. 2004. Model Studies on the Eutrophication of Shallow Lakes and Ditches. Wageningen University, Wageningen.
Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2):191-194.
Jöbgen A M, Palm A, Melkonian M. 2004. Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia, 528(1-3):123-142, https://doi.org/10.1007/s10750-004-2337-5.
Kesaano M, Sims R C. 2014. Algal biofilm based technology for wastewater treatment. Algal Research, 5:231-240, https://doi.org/10.1016/j.algal.2014.02.003.
Komárek J, Anagnostidis K. 1998. Cyanoprokaryota. 1. Teil:Chroococcales. In:Ettl H, Gärtner G, Heynig H, Mollenhauer D eds. Süswasserflora von Mitteleuropa..Spektrum Akademischer Verlag, Heidelberg, Berlin.
Komárek J, Anagnostidis K. 2005. Cyanoprokaryota. 2. Teil:Oscillatoriales. In:Büdel B, Gärtner G, Krienitz L, Schagerl M eds. Süswasserflora von Mitteleuropa.Spektrum Akademischer Verlag, Heidelberg, Berlin.
Komárek J. 2013. Cyanoprokaryota-3. Teil/3rd part:Heterocytous Genera. In:Büdel B, Gärtner G, Krienitz L eds. Süswasserflora von Mitteleuropa. Springer Spektrum Verlag, Heidelberg, Berlin.
Lakatos G. 1989. Composition of reed periphyton (biotecton) in the Hungarian part of Lake Fertö. Biologisches Forschungsinstitut fur Burgenland, 71:125-134.
Lange-Bertalot H, Hofmann G, Werum M. 2013. Diatomeen im süßwasser-benthos von mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. Koeltz Scientific Books, Königstein. p.908, 133
Lanza W G, Achá D, Point D, Masbou J, Alanoca L, Amouroux D, Lazzaro X. 2017. Association of a specific algal group with methylmercury accumulation in periphyton of a tropical high-altitude Andean lake. Archives of Environmental Contamination and Toxicology, 72(1):1-10, https://doi.org/10.1007/s00244-016-0324-2.
Larned S T. 2010. A prospectus for periphyton:recent and future ecological research. Journal of the North American Benthological Society, 29(1):182-206, https://doi.org/10.1899/08-063.1.
Liu J Z, Wang F W, Liu W, Tang C L, Wu C X, Wu Y H. 2016.Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton:From laboratory tank to polluted river. Bioresource Technology, 207:142-149, https://doi.org/10.1016/j.biortech.2016.02.011.
Lorenzen C J. 1967. Determination of chlorophyll and pheopigments:spectrophotometric equations. Limnology and Oceanography, 12(2):343-346, https://doi.org/10.4319/Lo.1967.12.2.0343.
Lu H Y, Wan J J, Li J, Shao H B, Wu Y H. 2016. Periphytic biofilm:A buffer for phosphorus precipitation and release between sediments and water. Chemosphere, 144:2 058-2 064, https://doi.org/10.1016/j.chemosphere.2015.10.129.
Matheson F E, Quinn J M, Martin M L. 2012. Effects of irradiance on diel and seasonal patterns of nutrient uptake by stream periphyton. Freshwater Biology, 57(8):1 617-1 630, https://doi.org/10.1111/j.1365-2427.2012.02822.x.
McCormick P V, Shuford Ⅲ R B E, Chimney M J. 2006.Periphyton as a potential phosphorus sink in the Everglades nutrient removal project. Ecological Engineering, 27(4):279-289, https://doi.org/10.1016/j.ecoleng.2006.05.018.
Mei X Y, Zhang X F. 2015. Periphyton responses to nitrogen and phosphorus enrichment of shallow lake systems dominated by submerged plants:A mesocosm study.Aquatic Ecosystem Health & Management, 18(1):114-120, https://doi.org/10.1080/14634988.2015.998982.
Metting B, Zimmerman W J, Crouch I V, Van Staden J. 1990.Agronomic uses of seaweed and microalgae. In:Akatsuka I ed. Introduction to Applied Phycology. SPB Academic Publishing, the Hague, p.589-627.
Metting F B Jr. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(5-6):477-489, https://doi.org/10.1007/bf01574779.
Mulbry W, Westhead K E, Pizarro C, Sikora L. 2005. Recycling of manure nutrients:use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technology, 96(4):451-458, https://doi.org/10.1016/j.biortech.2004.05.026.
Mulholland P J, Steinman A D, Palumbo A V, Elwood J W, Kirschtel D B. 1991. Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams. Ecology, 72(3):966-982, https://doi.org/10.2307/1940597.
Panswad T, Doungchai A, Anotai J. 2003. Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 37(2):409-415, https://doi.org/10.1016/S0043-1354(02)00286-5.
Pei G F, Wang Q, Liu G X. 2015. The role of periphyton in phosphorus retention in shallow lakes with different trophic status, China. Aquatic Botany, 12:17-22, https://doi.org/10.1016/j.aquabot.2015.04.005.
Périllon C, Pöschke F, Lewandowski J, Hupfer M, Hilt S. 2017. Stimulation of epiphyton growth by lacustrine groundwater discharge to an oligo-mesotrophic hardwater lake. Freshwater Science, 36(3):555-570, https://doi.org/10.1086/692832.
Popovský J, Pfiester L A. 1990. Dinophyceae (Dinoflagellida).In:Ettl H, Gerloff J, Heynig H, et al eds. Süwasserflora von Mitteleuropa. Fischer G. Verlag, Jena, Stuttgart.
Pratt C, Parsons S A, Soares A, Martin B D. 2012. Biologically and chemically mediated adsorption and precipitation of phosphorus from wastewater. Current Opinion in Biotechnology, 23(6):890-896, https://doi.org/10.1016/j.copbio.2012.07.003.
Reynolds C S. 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge.
Roeselers G, Van Loosdrecht M C M, Muyzer G. 2008.Phototrophic biofilms and their potential applications.Journal of Applied Phycology, 20(3):227-235, https://doi.org/10.1007/s10811-007-9223-2.
Scheffer M. 2004. Ecology of shallow lakes. Springer, Netherlands. 357p.
Shannon C E. 1948. A mathematical theory of communication.Bell System Technical Journal, 27(3):379-423.
Sindelar H R, Yap J N, Boyer T H, Brown M T. 2015. Algae scrubbers for phosphorus removal in impaired waters.Ecological Engineering, 85:144-158, https://doi.org/10.1016/j.ecoleng.2015.09.002.
Starmach K. 1974. Cryptophyceae, Dinophyceae, Raphidophyceae. Tom 4. In:Starmach K, Sieminska, J eds. Flora Slodkowodna Polski. Panstwowe Wydawnictwo Naukowe, Warszawa-Krakow.
Starmach K. 1983. Flora Slodkowodna Polski Tom 3.Euglenophyta. Panstwowe Wydawnictwo Naukowe, Warszawa-Krakow.
Starmach K. 1985. Chrysophyceae und Haptophyceae. In:Ettl H, Gerloff J, Heynig H, et al eds. Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York.
Stojanović V, Savić S. 2013. Management challenges in special nature reserve ‘Gornje Podunavlje’ and preparations for its proclamation of biosphere reserve. Geographica Pannonica, 17(4):98-105.
Stojanović V, Velojić M, Šakić R. 2014. Strategy for sustainable tourism development in the Special Nature Reserve ‘Gornje Podunavlje’. SNR Gornje Podunavlje, Sombor.
Sukačová K, Červený J. 2017. Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal-review of past trends and future perspectives in the context of nutrient recovery.European Journal of Environmental Sciences, 7(1):63-72, https://doi.org/10.14712/23361964.2017.6.
Sukačová K, Trtílek M, Rataj T. 2015. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research, 71:55-63, https://doi.org/10.1016/j.watres. 2014.12.049.
Ter Braak C J F, Šmilauer P. 2012. Canoco reference manual and user's guide:software for ordination, version 5.0.Microcomputer Power, Ithaca, USA.
Trbojević I S, Predojević D D, Šinžar-Sekulić J B, Nikolić N V, Jovanović I M, Subakov-Simić G V. 2019. Charophytes of gornje podunavlje ponds:revitalization process aspects.Matica Srpska Journal for Natural Sciences, 136:123-131, https://doi.org/10.2298/ZMSPN1936123T.
Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 9:1-38.
Wu Y H, Xia L Z, Yu Z Q, Shabbir S, Kerr P G. 2014. In situ bioremediation of surface waters by periphytons.Bioresource Technology, 151:367-372, https://doi.org/10.1016/j.biortech.2013.10.088.
Wu Y H, Zhang S Q, Zhao H J, Yang L Z. 2010. Environmentally benign periphyton bioreactors for controlling cyanobacterial growth. Bioresource Technology, 101(24):9 681-9 687, https://doi.org/10.1016/j.biortech.2010.07.063.
Copyright © Haiyang Xuebao