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  Abstract          Long non-coding RNAs (lncRNAs) are a class of transcripts longer than 200 bp, which 
have been emerged as essential regulators in numerous biological processes. Black rockfi sh ( Sebastes  
 schlegelii ) is an economic fi sh that widely cultured in the coastal areas of China, Japan, and South Korea. 
With the expansion of aquacultural scale, various pathogens have threatened its industry and reduced its 
economic values. It has been reported that lncRNA were involved in the immune response and metabolic 
pathway in teleost, while no study is available on identifi cation and functional analysis of lncRNAs in black 
rockfi sh so far. Herein, this study was performed to identify lncRNAs in the intestine of black rockfi sh 
after  Edwardsiella   tarda  infection. In our results, a total of 9 311 lncRNAs were identifi ed through high-
throughput sequencing, and 102 lncRNAs were signifi cantly regulated following challenge, which were 
predicted to target 3 348 mRNAs. Results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses of these target genes showed they were function in catalytic activity, 
hydrolase activity, defense response and peptidase activity, which involved in metabolic pathways and 
immune related pathways. In addition, 47 lncRNAs and 8 diff erentially expressed mRNAs (DEmRNAs) 
showed co-expression at two or more infection time points with metabolism and immunity functions. 
Moreover, real-time quantitative PCR (qRT-PCR) was performed to verify the reliability of sequencing 
gene expression analysis results. This research laid the foundation for further investigation of the regulatory 
roles of lncRNAs in the intestinal immune response of black rockfi sh. 

  Keyword :   long non-coding RNA; mRNA; intestine;  Sebastes   schlegelii ;  Edwardsiella   tarda  

 1 INTRODUCTION 

 Large numbers of non-coding RNAs (ncRNAs) 
have been reported in mammalian and other eukaryotes 
genomes. Majority of these ncRNAs are by-products 
of RNA processing, performing various regulatory 
functions in cells (Mercer et al., 2009). NcRNAs 
were initially thought to be spurious transcriptional 
noise resulting from low RNA polymerase fi delity 
because their low protein-coding capacity compared 
with other RNAs (Struhl, 2007). However, previous 
research showed ncRNAs could take part in a variety 
of biological processes (McHugh et al., 2015). As 
for ncRNA types, they can be divided into sncRNA 
(length between 20–50 nt), mncRNA (length between 

50–200 nt) and long non-coding RNAs (lncRNAs) 
(length over 200 nt) by diff erent lengths. Numerous 
functional studies on ncRNAs have been conducted 
in recent years especially for lncRNA. For instance, 
tens of thousands lncRNAs have been identifi ed 
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in species including human ( Homo   sapiens ), 
mouse ( Mus   musculus ), zebrafi sh ( Danio   rerio ), 
and  Caenorhabditis   elegans  (Zhao et al., 2016). 
Depending on their relative positions to coding genes, 
lncRNAs can be classifi ed into antisense lncRNAs, 
intronic lncRNAs, divergent lncRNAs, and intergenic 
lncRNAs (Ransohoff  et al., 2018). lncRNAs play 
important roles in higher-order chromosome 
dynamics, chromatin modifi cation, telomere biology, 
subcellular structural organization, transcriptional 
regulation, and post-transcriptional regulation. Mercer 
et al. (2009) found the down-regulation of a lncRNA 
called TROJAN impaired the proliferative potential of 
breast cancer cell lines in vitro, while over-expression 
of TROJAN promoted this ability (Jin et al., 2019). In 
addition, many lncRNA molecules related to human 
immune response were explored in early studies, such 
as Morrbid (Kotzin et al., 2016), lnc-Lsm3b (Jiang et 
al., 2018), NKILA (Huang et al., 2018). Moreover, 
innate immune responses of lncRNAs were widely 
investigated in other species. For example, mammals 
like sheep (Zhang et al., 2021a), arthropods like 
Drosophila (Zhang et al., 2020), several mollusks 
(Zhang et al., 2021b), even for plants (Gómez and 
Pallás, 2013). Therefore, the function of lncRNAs 
in the process of animal immune regulation is worth 
further exploration. 

 In teleost, the potential roles of lncRNAs have 
also been increasingly explored in recent years. 
For example, in common carp ( Cyprinus   carpio ) 
undiff erentiated gonads, 124 lncRNAs showed 
diff erential expression between experimental and 
control groups, which associated with gonadal 
development (Song et al., 2019). In the process of 
muscle growth, rainbow trout ( Oncorhynchus   mykiss ) 
harbored 1 160 diff erentially expressed lncRNAs 
among diff erent groups in the back muscle, involved 
in regulation of muscle growth (Paneru et al., 2018). 
Moreover, the lncRNAs in teleost involved in immune 
response against pathogenic infections was widely 
reported in previous studies. For example, 556 lncRNA 
showed diff erential expression when the rainbow 
trout infected by  Flavobacterium   psychrophilus . 
Several of them exhibited associations with immune 
related genes and pathways (Paneru et al., 2016). 
Furthermore, such immune related lncRNAs have 
also been identifi ed in zebrafi sh ( D .  rerio ) (Chen et 
al., 2018), olive flounder ( Paralichthys   olivaceus ) 
(Xiu et al., 2021), and Nile tilapia ( Oreochromis  
 niloticus ) (Li et al., 2018). However, knowledge 
of detailed immune regulation roles of lncRNAs in 
teleost is still limited.  

 Black rockfi sh ( Sebastes   schlegelii ) is one of the 
common economic fi sh species that widely distributed 
in the east coast of China, Korea, and Japan (Wang et 
al., 2020). The gram-negative pathogen  Edwardsiella  
 tarda  in seawater that seriously endangers the 
aquaculture environment. The infection caused by 
 E .  tarda  can result in systematic disease to fi sh, which 
can eventually lead to mass death (Xu and Zhang, 
2013). To study the mechanism of black rockfi sh 
in response to pathogen invasion, several immune 
molecules were identifi ed in recent studies including 
MyD88 (Shanaka et al., 2019), CTL (Du et al., 2018), 
CCL25 (Wang et al., 2020), TLRs (Cao et al., 2020), 
and NLRs (Cao et al., 2021a). Moreover, transcriptome 
analysis of non-coding RNAs in black rockfi sh, such 
as miRNAs (Im et al., 2020) and cricRNAs (Cao et 
al., 2021b) were conducted to explain their regulatory 
functions in black rockfi sh. However, the function of 
lncRNAs in black rockfi sh has not been studied so far. 
Accordingly, the diff erentially expressed lncRNAs 
and mRNAs between diff erent infection groups and 
the control group were analyzed in the intestine of 
black rockfi sh. Potential lncRNA-mRNA interactions 
were thereafter analyzed based on the co-expression 
analysis of diff erentially expressed lncRNAs and 
mRNAs. Meanwhile, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed with the targeted 
mRNAs of lncRNAs. The results will provide novel 
knowledge about lncRNAs in the intestinal immune 
responses in black rockfi sh, and serve as important 
resources for further investigating roles of lncRNAs 
during pathogen infections in teleost.  

 2 MATERIAL AND METHOD 

 2.1 Bacterial challenge and sampling 

 Healthy black rockfi sh were purchased from a 
fi sh farm in Qingdao, Shandong Province, China 
with length of about 15±2 cm. The experimental 
protocols were approved by the Committee on 
the Ethics of Animal Experiments of Qingdao 
Agricultural University Institutional Animal 
Care and Use Committee (IACUC).  E .  tarda  was 
isolated from diseased black rockfi sh. Subsequently, 
the purifi ed  E .  tarda  was inoculated in Luria-
Bertani (LB) medium at 28 ℃ with 180 r/min. The 
concentration of  E .  tarda  was 1×10 7  CFU/mL in the 
experimental group tank. The survival rate for 1×
10 7  colony forming unit (CFU)/mL 4 h is about 62%, 
which was detected in our previous study (Cao et al., 
2021a). In particular, individuals in the experimental 
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group were cultured in tank with  E .  tarda  for 4 h 
and then returned back to seawater. Meanwhile, the 
individuals in control group (CON) were cultured 
with seawater. The bath-challenge include four 
infection time points of 2 h, 6 h, 12 h, and 24 h. 
Therefore, the intestinal tissues from experimental 
groups were designated as EI2H, EI6H, EI12H, and 
EI24H, respectively. Furthermore, each time point 
had three replicates, and each replicate included 6 
random individuals. All samples were fl ash-frozen in 
liquid nitrogen and then stored in a -80-°C ultra-low 
freezer until preparation of RNA.  

 2.2 RNA isolation, cDNA library construction, and 
sequencing 

 RNAs were extracted and purifi ed using TRIzol 
Reagent (Invitrogen, Carlsbad, CA, USA) and treated 
with RNase-Free DNase I reagent (TIANGEN, 
Beijing, China). Subsequently, 1% agarose gels were 
used to check the contamination and degradation. 
And the RNA concentration was examined in 
NanoPhotometer ®  spectrophotometer. Meanwhile, the 
RNA Nano 6000 Assay Kit was used for measuring 
the integrity and quantity of RNA in Bioanalyzer 2100 
system. According to manufacturer’s suggestion, 
5-μg total RNA per sample was used to construct 
sequence libraries with Illumina TruSeq RNA Sample 
Preparation Kit (Illumina, San Diego, USA). Then, 
the prepared libraries were sequenced on an Illumina 
Hiseq 4000 platform. When the raw data obtained, 
fi ve sections of invalid data were removed including 
the reads with 5′ adapter, the reads without 3′ adapter, 
the reads with more than 10% N, the reads with poly 
DNA bases and the reads with low sequencing quality 
(bases with low quality values represented more than 
50% of the entire reads). After above steps, the clean 
reads were obtained. And the parameters of clean data 
including Q20, Q30, and GC content were calculated.  

 2.3 Identifi cation of lncRNAs 

 Firstly, the software HISAT2 was used to process 
the clean reads and mapped them onto the reference 
genome. For selecting lncRNAs in transcript libraries, 
fi lter conditions were set for all the clean-reads as 
follows: (1) selection of transcripts with exon ≥2, 
length >200 bp; (2) fi ltering out the transcripts which 
overlapped with database annotated exon regions; 
(3) removal of the transcripts with protein-coding 
capability based on the information in CNCI, Pfam, 
and CPC2 database. The names of novel lncRNAs 
were identifi ed according to the rules of HUGO 

Gene Nomenclature Committee (HGNC). Novel 
lncRNA sequences were also inspected and identifi ed 
based on known lncRNA and mRNA sequences 
(Supplementary Dataset 1). 

 2.4 Diff erential expression analysis of lncRNAs 

 A direct embodiment of a gene’s expression 
level was the abundance profi le of its transcripts. 
And higher transcript abundance refl ected higher 
levels of gene expression. The expression levels of 
genes were estimated by the count of sequencing 
sequences (reads) that mapped to a genomic regions 
or exonic regions. For quantifi cation, we employed 
the StringTie’s network stream algorithm to calculate 
FPKM values for each gene. Diff erential expression 
analysis was performed using EdgeR software. And 
the hierarchical clustering method was used to cluster 
the expression values of the samples. The padj-value 
were set less than 0.05 to fi lter diff erentially expressed 
genes (DEGs). 

 2.5 Co-expression analysis between lncRNA and 
their target mRNAs 

 The cis-acting target gene prediction and trans-
acting target gene prediction were used for fi nding the 
target genes of lncRNAs. The specifi c method of cis-
acting target gene prediction was used to select the 
protein-coding genes which located within 10–100 kb 
of lncRNAs. As for trans-acting target prediction, 
Pearson’ correlations coeffi  cients were used to 
calculate trans-acting regulatory elements between 
the coding genes and lncRNAs. 

 To better summarize the regulatory functions 
of lncRNAs in black rockfi sh, the interaction 
of lncRNA-mRNA was identifi ed between the 
diff erentially expressed lncRNAs and mRNAs. When 
the number of samples was ≥5, the co-expression 
acting target genes were selected and merged with 
the diff erentially expressed mRNAs for analysis. The 
diff erentially expressed lncRNAs and mRNAs were 
connected by analyzing the association between the 
target genes of diff erentially expressed lncRNAs 
and the diff erentially expressed mRNAs through co-
expression information.  

 2.6 The gene ontology and KEGG analysis  

 The gene ontology (GO) is a major bioinformatics 
database which defi ned one gene’s function into three 
domains: cellular component (CC), molecular function 
(MF), and biological process (BP) (Young et al., 
2010). Meanwhile, the KEGG (Kyoto Encyclopedia) 
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database focuses on the pooling of pathway maps 
of genes, RNAs, chemical reactions, and the others 
(Kanehisa et al., 2008). In order to perform GO and 
KEGG enrichment analysis in black rockfi sh, the target 
genes of diff erentially expressed lncRNAs with length 
corrected were processed by the ClusterProfi ler R 
package. And the enrichment results with corrected  P -
values less than 0.05 were considered signifi cant. 

 2.7 Real-time quantitative PCR (qRT-PCR) 
validation of lncRNA and mRNA expression analysis 

 For validation of the expression analysis of lncRNAs 
and mRNAs in sequencing, total RNA was extracted 
from black rockfi sh. PrimeScript™ RT reagent Kit 
(TaKaRa, Japan) was used to reversely transcribe 
RNA into cDNA according to the manufacturer’s 
instructions. Elongation factor-1 alpha (EF1-α) 
was chosen as internal control. The validated qRT-
PCR primers were designed by PrimerQuest Tool 
(https://www.idtdna.com/pages/tools/primerquest). 
Subsequently, CFX96 real-time PCR detection system 
(Bio-Rad Laboratories, Hercules, CA) was used to 
verify the expression levels of lncRNA and mRNA. 
The qRT-PCR reaction system is as follows: 10 μL 
of SYBR ®  Premix Ex TaqTM II (TliRNaseH Plus), 
0.6 μL of each primer, 2 μL of the 10-fold dilution 
cDNA, 6.8-μL nucleotide-free water. The qRT-PCR 
running program is set as follows: 5 min at 95 °C, 
followed by 35 cycles of 95 °C for 5 s, 56 °C for 30 s 
and 72 °C for 30 s, then up to 95 °C with a rate of 
0.1 °C/s increment. After qRT-PCR, 2 -ΔΔ  C  t  method 
was used to calculate the expression fold change of 
lncRNA and mRNA (Livak and Schmittgen, 2001). 

 3 RESULT 

 3.1 Sequencing data  

 The sequencing libraries were named by their 
infection time points as: CON, EI2H, EI6H, EI12H, 
and EI24H. The sequenced reads were determined 
and classifi ed into four data types include Raw_reads, 
Clean_reads, Raw_bases, and Clean_bases. A total of 
2 935 704 384 raw reads were produced in 15 groups. 
Meanwhile, the 2 872 246 718 clean reads were generated 
after removing the low-quality, adapter-containing 
reads, and N-containing reads from the raw reads. All 
libraries had available sequencing quality with more 
than 15.06 Gb clean bases for each library. Meanwhile, 
in 15 sequencing libraries, the sequencing quality related 
parameters with the values of Q20 ≥97.93, Q30 ≥94.07, 
and error rate ≤0.03 (Supplementary Table S1). 

 A total of 9 311 lncRNAs were obtained from clean 
reads after quality control. The length of lncRNAs 
ranged from 201 to 71 349 bp, and the number of 
exons ranged from 2 to 37. Overall, the exon numbers 
of novel lncRNA were mostly in the range of 0–15, 
much smaller than that of mRNAs (Fig.1c). The 
distribution tendency of open reading frames (ORF) is 
similar to that of exons (Fig.1b), and the ORF lengths 
of lncRNA were all located within 1 000 bp, while 
those of mRNAs can reach up to 3 000 bp. In terms of 
length, novel lncRNAs had similar trends to annotated 
mRNAs, with the majority of the full length residing 
between 2 000–2 500 bp, and novel RNAs had a 
broader range and general longer full length (Fig.1b). 
The number of included lncRNAs showed a decreasing 
trend as the length range increased stepwise (Fig.1d). 
The proportion of exon, intergenic, and intronic in all 
samples were presented in Fig.1e. Among the diff erent 
types of lncRNAs, 65.7% of the discovered lncRNAs 
belong to long intergenic non-coding RNA (lincRNA), 
16.2% of them belong to antisense, and 18.1% of them 
were overlapping. In addition, there were no sense 
intronic lncRNAs type existed (Fig.1f). 

 3.2 The diff erential expression analysis of lncRNAs 
after  E .    tarda  infection  

 A total of 102 lncRNAs underwent changes in 
expression trends, with 10 up-regulated and 12 
down-regulated at 2 h, 34 up-regulated and 16 down-
regulated at 6 h, 8 up-regulated and 16 down-regulated 
at 12 h, and 16 up-regulated and 12 down-regulated at 
24 h (Fig.2a). The most up-regulated lncRNAs were 
observed at 6 h with 34. Subsequently, 66 lncRNAs 
with signifi cant expression changes at each time point 
were selected and subjected to expression heatmaps 
(Fig.2b). Obviously, evm.TU.Chr8.478 was down-
regulated at EI2H. Meanwhile, evm.TU.Chr5.1155 
showed signifi cant up-regulation at EI6H. Particularly, 
the lncRNA evm.TU.Chr22.794 showed obvious up-
regulation trend at four infection time points, whereas 
XLOC_012887 showed obviously down-regulation 
trends at four infection time points. Overall, the 
number of up-regulated lncRNAs was slightly higher 
than down-regulated lncRNAs.  

 3.3 The enrichment analysis of lncRNA target mRNA 

 A total of 3 348 target mRNA were confi rmed 
between groups to groups for further research. And 
the GO enrichment analysis was performed on all 
the target mRNAs (Fig.3). It mainly contained three 
categories: cellular component, biological process 
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 Fig.3 Gene ontology (GO) analysis of mRNA genes in EIH2, EIH6, EIH12, and EIH24 
 BP: biological process; CC: cellular component; MF: molecular function .

To be continued
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and molecular function. The results of GO enrichment 
at 2 h, 12 h, and 24 h after infection with  E .  tarda  
showed higher number of genes involved in molecular 
function than the other two functions. Diff erently, the 
genes of the process function accounted for a higher 
proportion in EI6H group. Specifi cally, in EI2H group, 
the number of genes possessing catalytic activity was 
the greatest, followed by hydrolase activity. In EI6H 
group, the highest number of genes had the defense 
response function. Meanwhile, peptidase activity 
emerged as the function performed by the largest 
number of genes in EI12H group. Finally, in EI24H 
group, the number of genes with catalytic activity was 
signifi cantly higher than the other enriched functions. 

 KEGG enrichment of target gene also represents 
diff erent functional enrichment at 2-h, 6-h, 12-h, 
and 24-h infection time points (Fig.4). The EI2H 
group showed most genes played a role in metabolic 
pathways, especially for the inositol phosphate 
metabolism, glycerophospholipid metabolism, 
and carbon metabolism. There were also a number 
of immune-related pathways such as nucleotide 
oligomerization domain (NOD)-like receptor 
signaling pathway in enrichment analysis results. 
Meanwhile, the EI6H and EI24H groups showed 
similar results to the previous group. The diff erence 
was that the classic immune pathway, RIG-I-like 
receptor signaling pathway was appeared at these 
infection time points. And for EI12H group, in 
addition to metabolic and immunity pathways such 
as phagosome, calcium signaling pathway and focal 
adhesion, neuroactive ligand-receptor interaction 

and lysosome were also functionally clustered with 
a larger number of genes. Besides, few genes with 
high rich factor and low q-value displayed in steoid 
biosynthesis from EI2H, EI6H, and EI24H groups. 
Especially in EI24H group, the enrichment was 
signifi cant in selenocompound metabolism. 

 3.4 Potential interaction between lncRNAs and 
DEmRNAs  

 Among the results of the GO and KEGG enrichment 
analysis, 38 diff erentially expressed mRNAs 
(DEmRNAs) in 4 groups (EI2H, EI6H, EI12H, and 
EI24H) which had functions in important pathway 
were further selected, such as metabolic or immune 
pathway. Finally, 8 DEmRNA (evm.TU.Chr9.463_
MMP13, evm.TU.Chr13.188_CARNMT2, and evm.
TU.Chr16.796_BET1, evm.TU.Chr2.1072_GATM, 
evm.TU.Chr8.51_TNFSF13B, evm.TU.Chr16.518_
FCGBP, evm.TU.Chr2.1283_MUC5B, evm.
TU.Chr7.943_DHCR3), which showed consistent 
trends of regulation with diff erentially expressed 
lncRNAs at two or more time points were selected. 
Meanwhile, 47 lncRNAs with strong co-expression 
for these DEmRNA were also selected (Fig.5). In 
this analysis, most lncRNAs were co-expressed with 
one mRNA. Meanwhile, there was also a member of 
lncRNAs co-expressed with two and more DEmRNAs. 
Among them, the number of lncRNA co-expressed 
with two DEmRNA was thirteen, while the number 
of lncRNA co-expressed with three DEmRNAs 
was four (XLOC_067928, evm.TU.Chr1.1983, 
XLOC_030904, and XLOC_032649). In particular, 
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only four DEmRNAs (Chr 13.188_CARNMT2, 
Chr 21.072_GATM, Chr 16.518_FCGBP, and Chr 
2.1283_MUC5B) were the focal objects when one 
lncRNA was co-expressed with multiple DEmRNAs. 
The remaining DEmRNAs were all co-expressed 
with only a single lncRNA. 

 The identifi ed eight DEmRNAs obtained from black 
rockfi sh were listed in Table 1. The function prediction of 
DEmRNAs were obtained according to the NR database. 
Among them, DEmRNA evm.TU.Chr8.51_TNFSF13B 

was identifi ed as tumor necrosis factor like superfamily 
member 13b (TNF13B), a gene involved in the positive 
regulation of T-cell proliferation and associated 
with B-cell maintenance homeostasis in human and 
an important immune factor. Evm.TU.Chr9.463_
MMP13, evm.TU.Chr13.188_CARNMT2, and evm.
TU.Chr7.943_DHCR3 were annotated as Collagenase 
3 (MMP-13), Carnosine N-methyltransferase 2 and 
3-beta-hydroxysteroid-Delta (8). Moreover, other 
DEmRNAs had diff erent biological activities like 

 Table 1 Information for eight signifi cant co-expression mRNA at multiple time points. 

 Name of DEmRNA  Annotated 

 evm.TU.Chr9.463_MMP13  Collagenase 3 

 evm.TU.Chr13.188_CARNMT2  Carnosine N-methyltransferase 2  

 evm.TU.Chr16.796_BET1  BET1 homolog 

 evm.TU.Chr2.1072_GATM  Glycine amidinotransferase, mitochondria  

 evm.TU.Chr8.51_TNFSF13B  Tumor necrosis factor ligand superfamily member 13B  

 evm.TU.Chr16.518_FCGBP  IgGFc-binding protein 

 evm.TU.Chr2.1283_MUC5B  Mucin-5B 

 evm.TU.Chr7.943_DHCR3  3-beta-hydroxysteroid-Delta (8), Delta (7)-isomerase  
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mediating protein transport (evm.TU.Chr16.796_
BET1), involving in creatine biosynthesis (evm.
TU. Chr2.1072_GATM), maintaining the mucosal 
architecture (evm.TU.Chr16.518_FCGBP), binding 
collagen and Ca 2+  (evm.TU.Chr9.463_MMP13), and 
inhibited endopeptidases activity (evm.TU.Chr2.1283_
MUC5B) (Fig.6). 

 3.5 qRT-PCR verifi cation of selected lncRNA and 
mRNA 

 To verify the accuracy of the sequencing information, 
4 DEmRNA and 8 lncRNAs were randomly selected 
for qRT-PCR verifi cation. The results showed the 
gene expression trends of obtained by qRT-PCR were 
generally consistent with transcriptome data (Fig.7). 
In detail, the expression patterns of most lncRNAs 
(XLOC_074289, XLOC_043541, XLOC_064520, 
XLOC_030548, XLOC_090070, evm.TU.Chr11.770, 
and XLOC_067928) calculated by qRT-PCR showed 

similar trends with those from sequencing results 
at two marked infection time points. For example, 
XLOC_074289 exhibited 6.22, 6.22, 6.14, and 6.20 
fold down-regulation at 2 h, 6 h, 12 h, and 24 h infection 
time points based on the sequencing data. We found 
that the expression levels of XLOC_074289 from 
qRT-PCR downregulated with 3.03, 1.47, 2.00, and 
2.88 fold, respectively. Similar trends were found in 
XLOC_043541 and XLOC_064520. As for mRNAs, 
the qRT-PCR fold change and transcriptome data 
for evm.TU.Chr8.51_TNFSF13B showed similar 
up-regulate trend from 2 h to 6 h. In contrast, evm.
TU.Chr16.518_FCGBP showed down-regulate trend 
from 6 h time point to 24 h time point. In summary, 
the expression trends of lncRNAs and mRNAs 
obtained by qRT-PCR showed 71% consistency with 
transcriptome data. Therefore, the research on the co-
expression of lncRNAs and DEmRNAs based on the 
transcriptome data were basically reliable.  
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 4 DISCUSSION 

 Currently,  E .  tarda  infection remains one of 
the pathogens that present a serious threat to black 
rockfi sh. In order to study the defense mechanism 
of black rockfi sh against this pathogen, we focused 
our research on long non-coding RNA which has 
been demonstrated with pivotal roles in various 
biological processes, especially the gene expression 
regulation, including transcriptional regulation, 
posttranscriptional control, and epigenetic processes. 
In recent years, the development of high-throughput 
sequencing technologies facilitated the discovery 
of lncRNAs. It has been found that lncRNAs play 
important roles in the regulation of immune responses 
in teleost (Geng and Tan, 2016). For example, the 
identifi ed lncRNA-WAS and lncRNA-c8807 in grass 
carp ( Ctenopharyngodon   idellus ) can interact with 
miRNA and activated NF-κB pathway to resist the 
invasion of pathogens (Fan et al., 2021). Moreover, 
the evolutionary conserved lncRNA were found 
in whitefi sh and could serve as biomarkers of liver 
injury (Florczyk et al., 2021). In the intestine of olive 
fl ounder, the identifi cation of lncRNA from RNA-

sequencing had also been carried out. And their target 
genes were enriched in numerous immune-related 
processes and exhibited a strong correlation with 
immune-related signaling pathways (Xiu et al., 2021). 
However, the relevant study of lncRNAs in black 
rockfi sh was still lacking. In this research, we obtained 
a total of 9 311 lncRNAs from one control group 
and four treatment groups infected with  E .  tarda . 
And the related sequencing quality parameters such 
as the value of Q20 ≥97.93, Q30 ≥94.07, and error 
rate ≤0.03 in all the 15 libraries can corroborate the 
sequencing data with high confi dence.  

 The results of full length, ORF length, and number 
of exons for the novel lncRNAs presented diff erent 
concentrated positions. Meanwhile, the ranges of 
the three parameters of lncRNAs were less than 
annotated mRNA and novel mRNA. It was related 
to the fi lter strategy of the transcriptome and the 
properties of the lncRNAs. From the identifi ed 
lncRNAs classifi cation charts, lincRNAs accounted 
for the highest proportion (65.7%). Based on the 
research recently, FANTOM5 consortium used cap 
analysis for the number of 27 919 human lncRNA, 
13 105 (46.9%) of them were lincRNAs, which 
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showed that lincRNAs also had a high proportion in 
human genome (Ransohoff  et al., 2018).  

 GO and KEGG analyses were performed on 3 348 
target mRNAs of lncRNAs, which were selected by 
cis-acting target gene prediction and trans-acting 
target gene prediction methods. Four kinds of most 
obvious enrichment items showed in GO analysis 
included catalytic activity, hydrolase activity, defense 
response, and peptidase activity. Actually, lncRNAs 
had also been identifi ed with relevant activities in 
other species. For example, the catalytic activity of 
lncRNA was discovered in human endothelial cells 
which were adhered by prostate tumor cells PC-3M 
(Pan et al., 2021). In addition, we found that there were 
multiple lncRNAs co-expressed with the immune 
defense genes, such as lncRNA transcript-12631 and 
transcript-12631 in  Spiroplasma   eriocheiris  (Ren et 
al., 2020). Meanwhile, a nuclear enriched lncRNA 
targeting ubiquitin carboxy terminal hydrolase L1 
(Uchl1) could increase the transcription level of Uchl 
after neurodegenerative diseases in mouse (Carrieri 
et al., 2012). Not only in mammal, in  Epinephelus  
 coioides , lncRNAs can regulate genes related to serine 
hydrolase activity and mediate immune response 

(Tang et al., 2019). As for the peptidase activity, 
Liang et al. (2020) found lncRNA 2810403d21rik/
ak007586/mirf can indirectly target usp15 (ubiquitin 
specifi c peptide 15) attenuated ischemic stress, which 
induced by cell death attenuated ischemic stress via 
microRNA competition pathway (Liang et al., 2020). 
The KEGG analysis showed the target mRNAs existed 
enrichment in several signaling pathways, especially 
in the metabolic pathway in black rockfi sh. For the 
diff erentially expressed lncRNAs selected from the 
gene panel acquired from hepatocellular carcinoma, 
the targeted mRNAs from them had obvious metabolic 
pathway enrichment (Wang et al., 2021b). And the 
metabolic-related pathway was further enriched by 
mRNA in olive fl ounder in previous research (Xiu et 
al., 2021). In addition, a partial of mRNA was also 
enriched in neuroactive ligand-receptor interaction 
and lysosome pathway with lower q-value. 

 In black rockfi sh, a total of 102 lncRNAs were 
identifi ed after  E .  tarda  infection. Among which, the 
lncRNA evm.TU.Chr5.1155 had particularly high 
expression at 6 h after  E .  tarda  infection. Its target 
mRNA was G-protein coupled receptor activity. 
Recent studies had shown that lncRNA LINK-A in 
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mouse mammary glands could facilitated crosstalk 
between the G-protein coupled receptor pathways and 
phosphatidylinositol-(3,4,5)-trisphosphate, fi nally 
causing metastatic mammary gland tumors (Hu et 
al., 2019). Thus, we can deduce that lncRNA evm.
TU.Chr5.1155 can regulate the immune pathway 
of black rockfi sh with targeting mRNA. To search 
for functional DEmRNAs as well as lncRNAs with 
relevant regulatory roles in black rockfi sh. A total of 
8 DEmRNAs with 47 related lncRNAs were selected 
from target mRNA and co-expression lncRNA at two 
or more  E .  tarda  infection time points. As for selecting 
lncRNA with biological regulatory functions, the 
DEmRNAs involved in metabolism and immunity 
had been focused on. Especially, the DEmRNAs 
evm.TU.Chr8.51_TNFSF13B was identifi ed as 
TNF13B which is also known as B-cell activating 
factor (BAFF) or B-lymphocyte stimulating factor 
(BLyS) (Ai et al., 2011). It was an important member 
of TNFSF family, the cytokines linked to diverse 
immunological and developmental pathway (Glenney 
and Wiens, 2007). The immune function of BAFF 
has also been characterized in various fi sh species, 
such as mefugu ( Takifugu   obscurus ) (Ai et al., 2011), 
Japanese sea perch ( Lateolabrax   japonicus ) (Cui et 
al., 2012), rainbow trout (Granja and Tafalla, 2019), 
and grass carp ( Ctenopharyngodon   idella ) (Pandit et 
al., 2013).  

 Particularly, the DEmRNA evm.TU.Chr2.1283_
MUC5B and evm.TU.Chr16.518_FCGBP were 
previously considered to be important molecules 
in intestinal immunity in teleost. The evm.
TU.Chr2.1283_MUC5B was annotated as Mucin-
5B. In previous research, to block the invasion of 
pathogenic organisms, the fi sh bodies were always 
covered with a mucus layer which especially existing 
in the tissues like gut, epidermis, and gill (Subramanian 
et al., 2008). And the composition of mucus was 
very complex, containing mucins, immunoglobulins, 
complement, lectins, lysozyme, and others (Voynow 
and Rubin, 2009). Among them, mucin was expressed 
by epithelial cells and played a role in maintaining 
homeostasis in various organs. And the MUC2, 
MUC5AC, and MUC5B have received attention as 
three protein molecules that have been implicated in 
a variety of infection as cancer (Conze et al., 2010; 
Dong et al., 2020), gastric tumors (Mejías-Luque 
et al., 2010), and idiopathic interstitial pneumonia 
(Lou et al., 2020). In teleost, several mucin related 
gene segments were also explored in sequencing 
information of multiple fi sh species like  Scophthalmus  

 maximus  (Gao et al., 2021),  Salmo   salar  (Micallef et 
al., 2012), and  Sparus   aurata  (Pérez-Sánchez et al., 
2013). Especially for common carp, the MUC5B 
showed down-regulation after CyHV-3 associated 
disease in the skin which can cause secondary 
infection among other fi sh (Adamek et al., 2013). 
Moreover, the carp MUC5B was identifi ed to have 
high similarity to its counterpart in mammals and birds 
(van der Marel et al., 2012). It means the MUC5B had 
a certain degree of conservation in the evolutionary 
process. The DEmRNA evm.TU.Chr16.518_FCGBP 
was identifi ed as IgGFc-binding protein, which also 
can be named as FCGBP, an important intestinal 
mucus protein interacted with the Fc portion of IgG 
and with MUC2 (Johansson et al., 2009; Ehrencrona 
et al., 2021). Moreover, the FCGBP was ubiquitous 
in vertebrates, has a conserved N-terminal domain. 
Although its specifi c mechanism of action was not 
yet clear in teleost, its diff erential expression in 
numerous tumors made researchers interested in its 
immune function (Wang et al., 2021a). As for aquatic, 
in hepatopancreas of  Sinonovacula   constricta , the 
IgGFc-binding protein showed signifi cant expression 
after  Vibrio   parahaemolyticus  infection through 
the analysis of transcriptomes (Zhao et al., 2017). 
There is no doubt that the immune function of two 
DEmRNAs evm.TU.Chr2.1283_MUC5B and evm.
TU.Chr16.518_FCGBP in black rockfi sh need further 
study. 

 For metabolism function, the DEmRNA evm.
TU.Chr9.463_MMP13, evm.TU.Chr13.188_
CARNMT2, and evm.TU.Chr7.943_DHCR3 
were identifi ed as Collagenase 3, Carnosine 
N-methyltransferase 2, and 3-beta-hydroxysteroid-
Delta(8), Delta(7)-isomerase, which performed 
collagen catabolism, carnosine metabolism, and 
sterol metabolism respectively in biological 
processes. Although there are limited studies on 
these metabolism-related molecules in teleost, their 
biological functions were also proved in other species. 
For example, Collagenase 3 played an important role 
in cartilage erosion independent of proteoglycan loss 
in mutant mice. And Carnosine N-methyltransferase 
2 can transfer a methyl group to carnosine (β-alanyl-
l-histidine) and closely related to the production of 
anserine (Cecilia Berin and Chehade, 2010), which 
act to retard and reverse non-enzymatic glycation 
(Szwergold, 2005). For 3-beta-hydroxysteroid-delta 
(8), delta (7)-isomerase, it is an enzyme that mainly 
played a role in cholesterol synthesis. The mutations 
in this gene can cause mosaic patchy epidermal 
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hyperkeratinization (Man et al., 2016). These 
metabolic molecules and the co-expressed lncRNAs 
provided material for in-depth study of fi sh metabolic 
system. 

 5 CONCLUSION 

 The expression patterns of lncRNAs in the 
intestine of black rockfi sh were investigated by high-
throughput sequencing technique, and the functional 
enrichment analysis such as GO and KEGG were 
performed. The results show that DEGs are enriched 
in immune and metabolic-related pathways. Totally, 
8 DEmRNAs and 47 lncRNAs were obtained from 
3 348 target mRNAs and 1 998 associated lncRNAs. 
Meanwhile, the expression patterns of DEmRNAs 
and lncRNAs from RNA-seq were verifi ed by qRT-
PCR. Finally, the functions of immune and metabolic-
related DEmRNAs and lncRNAs in black rockfi sh 
were discussed. This study laid the foundation 
for further investigation of the regulatory roles of 
lncRNAs in the intestinal immune and metabolic 
response of black rockfi sh. 

 6 DATA AVAILABILITY STATEMENT 

 The mRNA analyzed during this study is included 
in the published article available at https://doi.
org/10.3389/fi mmu.2020.618687. The lncRNA 
dataset analyzed during the current study is available 
in the Supplementary Dataset 1. 
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