
Journal of Oceanology and Limnology
Vol. 41 No. 1, P. 57-71, 2023
https://doi.org/10.1007/s00343-022-1295-y

  Sound speed profi les in high spatiotemporal resolution using 
multigrid three-dimensional variational method: a coastal 
experiment off  northern Shandong Peninsula* 

  Guangchao HOU 1 , Jingsheng ZHAI 1 , Qi SHAO 1, 2 , Yanling ZHAO 3 , Wei LI 1, 2, ** ,
Guijun HAN 1, ** , Kangzhuang LIANG 1  
  1  School of Marine Science and Technology, Tianjin University, Tianjin 300072, China 
  2  Tianjin Key Laboratory for Oceanic Meteorology, Tianjin 300074, China 
  3    The PLA 31010 Units, Beijing 100081, China 

 Received Sep. 8, 2021; accepted in principle Nov. 8, 2021; accepted for publication Jan. 14, 2022 
 © Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2023 

  Abstract         It is essential to acquire sound speed profi les (SSPs) in high-precision spatiotemporal resolution 
for undersea acoustic activities. However, conventional observation methods cannot obtain high-resolution 
SSPs. Besides, SSPs are complex and changeable in time and space, especially in coastal areas. We proposed 
a new space-time multigrid three-dimensional variational method with weak constraint term (referred to 
as STC-MG3DVar) to construct high-precision spatiotemporal resolution SSPs in coastal areas, in which 
sound velocity is defi ned as the analytical variable, and the Chen-Millero sound velocity empirical formula 
is introduced as a weak constraint term into the cost function of the STC-MG3DVar. The spatiotemporal 
correlation of sound velocity observations is taken into account in the STC-MG3DVar method, and the 
multi-scale information of sound velocity observations from long waves to short waves can be successively 
extracted. The weak constraint term can optimize sound velocity by the physical relationship between sound 
velocity and temperature-salinity to obtain more reasonable and accurate SSPs. To verify the accuracy of the 
STC-MG3DVar, SSPs observations and CTD observations (temperature observations, salinity observations) 
are obtained from fi eld experiments in the northern coastal area of the Shandong Peninsula. The average root 
mean square error (RMSE) of the STC-MG3DVar-constructed SSPs is 0.132 m/s, and the STC-MG3DVar 
method can improve the SSPs construction accuracy over the space-time multigrid 3DVar without weak 
constraint term (ST-MG3DVar) by 10.14% and over the spatial multigrid 3DVar with weak constraint term 
(SC-MG3DVar) by 44.19%. With the advantage of the constraint term and the spatiotemporal correlation 
information, the proposed STC-MG3DVar method works better than the ST-MG3DVar and the SC-
MG3DVar in constructing high-precision spatiotemporal resolution SSPs. 

  Keyword : space-time multigrid 3DVar; sound speed profi les; temperature; salinity; spatiotemporal 
correlation; multiscale 

 1 INTRODUCTION 

 The undersea acoustic activities are highly 
correlated with seawater sound speed profi les (SSPs) 
in coastal areas, especially in the fi eld of hydrographic 
surveys (Church, 2020). It is well known that the 
measurement accuracy of modern sonar sounding 
equipment (Multi-Beam Echo-Sounder, MBES) 
based on acoustic time-of-arrival ranging is greatly 
degraded due to the lack of suffi  cient high-precision 
spatiotemporal resolution SSPs. Besides, SSPs are 

complex and changeable in coastal areas. However, 
there are few studies on the construction method 
of high spatiotemporal resolution SSPs due to 
the complex environment of the coastal areas and 
observational defi ciency over there. Therefore, it 
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is extremely crucial to obtain high-resolution SSPs 
based on available observations in coastal areas, 
including sound velocity observations, temperature-
salinity observations. 

 In general, Sound Velocity Profi ler (SVP) (Didier 
et al., 2019) is used to directly obtain SSPs in the 
traditional SSPs measurement method. In addition, 
the other way is to measure salinity, temperature 
and static pressure of the immediate ocean water 
column through Conductivity Temperature Depth 
(CTD) profi ler and then obtain the SSPs by the sound 
velocity empirical formula (Jamshidi and Abu Bakar, 
2011). On the one hand, it is impossible to obtain high 
spatiotemporal resolution SSPs by these traditional 
stop-and-start measurement methods, which cost 
plenty of time to do the survey. On the other hand, these 
traditional SSPs observation methods cannot meet the 
high precision requirements of modern hydrographic 
surveying since these traditional methods assume that 
the time scales of sound velocity changes are much 
longer than the standard in-situ sampling period 
of SSPs. Since the late 1990s, the underway sound 
velocity profi ler (known as moving vessel profi ler, 
MVP) has been used to obtain high spatiotemporal 
resolution SSPs to provide hydrographers with an 
unprecedented ability to sample the sound velocity 
through which they sample the seafl oor (Furlong et 
al., 1997). However, the capital costs and ongoing 
maintenance costs of MVP are both much higher than 
traditional SSPs observation instruments due to the 
increasing sophistication in deployment hardware and 
control components. In addition, the vast majority of 
hydrographic survey vessels do not have underway 
SSPs capability. 

 Recently, many studies have shown that the 
subsurface temperature fi eld can be inferred from 
sea surface height anomaly (SSHa) and sea surface 
temperature (SST) by the physical relation based on 
the fact that the heat expansion and contraction of 
seawater (Fox et al., 2002; Wang et al., 2013). In the 
deep ocean area, subsurface salinity can be calculated 
from the above subsurface temperature (there exists 
a stable relationship between them (Mamayev, 2010) 
since the deep ocean areas are dominated by the fi rst 
baroclinic modes (Wunsch, 1997; Shinoda, 2012)), 
and then the high spatiotemporal resolution SSPs can 
be further calculated through the empirical formula 
of undersea sound velocity. Chen et al. (2020) 
reconstruct the SSPs directly from SSHa and SST 
using a self-organizing map method (SOM), which 
is more suitable for nonlinear dynamics in the deep 

ocean areas. However, the applicability of the method 
in the shallow sea regions is still very poor. First of 
all, this is due to the very poor quality of SSHa in 
the nearshore shallow coastal areas, which makes 
it impossible to obtain a high-quality subsurface 
temperature fi eld. In addition, the shallow sea regions 
are dominated by the barotropic signal. The above two 
factors make it impossible to obtain the subsurface 
salinity fi eld from the subsurface temperature fi eld in 
coastal sea areas. 

 Ocean data assimilation schemes have been 
substantially developed since the mid-1980s through 
which the observation and background information in 
space-time dimension, as well as physics constraints, 
have been fully used (Bocquet et al., 2010; Edwards 
et al., 2015; Bannister, 2017; Carrassi et al., 2018), 
including the variational data assimilation (3DVar (Fu 
et al., 2012; Fu, 2013), 4DVar (Powell et al., 2008a, b; 
Carrier et al., 2014; Ngodock and Carrier, 2014)), the 
ensemble data assimilation (ensemble Kalman fi lter 
(EnKF) (Evensen, 2003; Keppenne et al., 2005; Shu 
et al., 2011; Houtekamer and Zhang, 2016)), and the 
ensemble-variational (EnVar) (Liu and Xiao, 2013; 
Desroziers et al., 2014; Liu and Xue, 2016; Liang et al., 
2021). The 3DVar is an important tool for numerical 
forecast and reanalysis of the ocean. Compared 
with other ocean data assimilation methods, one of 
3DVar’s advantages is that some constraints terms can 
be introduced. The traditional 3DVar method usually 
uses the correlation scale method (Derber and Rosati, 
1989) and the recursive fi ltering method (Hayden and 
James Purser, 1995) to construct the background fi eld 
error covariance matrix ( B ). Regardless of whether 
the correlation scale method or the recursive fi ltering 
method is used to construct  B , only the information of 
a specifi c wavelength can be extracted due to the static 
characteristics of the traditional 3DVar method, and 
the short-wave information cannot be extracted well if 
the long-wave information is not extracted well. 

 To quickly and sequentially minimize the longwave 
and shortwave errors, a multigrid 3DVar approach (in 
this paper, we call it MG3DVar) has been proposed 
by Xie et al. (2005). By using the MG3DVar, Li et al. 
(2008) assimilate the sea surface temperature (SST) 
and temperature profi le observations to predict the 
China Seas’ temperature, and this scheme has higher 
forecast accuracy and lower root-mean-square errors 
than that of the traditional 3DVar. 

 In this study, we proposed a method, the space-
time multigrid 3DVar data assimilation scheme 
with temperature-salinity constraint terms (STC-
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MG3DVar), for constructing high spatiotemporal 
resolution SSPs in coastal areas using sound velocity 
and temperature-salinity observations based on the 
MG3DVar method described above. In this method, 
sound velocity is defi ned as the control variable of the 
cost function. First, the spatiotemporal correlation and 
multiscale information of sound velocity observations 
can be eff ectively considered in the STC-MG3DVar 
method. Besides, it is well known that sound velocity 
is highly correlated with the ocean’s temperature-
salinity fi elds, and high-precision temperature-salinity 
observations may eff ectively refl ect the variation 
of the sound velocity fi eld in turn. Therefore, we 
introduce the Chen-Millero sound velocity empirical 
formula as a weak constraint into the cost function 
of the STC-MG3DVar, which can improve the SSPs’ 
accuracy through the physical relationship between 
sound velocity and temperature-salinity. To validate 
the accuracy of the STC-MG3DVar method for 
constructing high spatial and temporal resolution 
SSPs, we obtained 27 sets of CTD (temperature profi le 
and salinity profi le) and SSPs observation profi les in 
the northern coastal area of the Shandong Peninsula. 

 The remainder of the paper is organized as follows: 
Section 2 describes the study area and data used in 
this study, and the detailed methodology is also 
presented in this section. In Section 3, we present the 
setup of experiments and the performance evaluation 
criteria. The results and discussions are illustrated and 
discussed in Section 4. Section 5 is our conclusion of 
the study. 

 2 DATA AND METHOD 

 2.1 SVP and CTD observation profi le data 

 In this study, we measured SSPs observations by the 
Valeport Sound-Velocity-Profi ler (called “MiniSVP”, 
Valeport Ltd., United Kingdom) instrument and 
CTD profi le observations (including temperature 
profi le (TP) and salinity profi le (SP) observations) 
by the Valeport Conductivity-Temperature-Depth 
profi ler (called “MiniCTD”) in the northern coastal 
area of the Shandong Peninsula. The experimental 
area includes the North Yellow Sea of China in an 
area of 37.575°N–37.605°N, 122.06°E–122.12°E, 
as shown in Fig.1. The depth of this experimental 
area approximately ranges from 25 to 70 m. The 
approximate locations of these fi eld observation 
stations are shown in Fig.1. The “MiniSVP” and 
“MiniCTD” instruments were deployed together 
during this ocean survey on June 8, 2019, and SSPs 
observations and CTD observations are observed 
at each observation station. As shown in Fig.1, we 
measured Nos. 1–27 observation station, and the 
observations were sampled at 1 Hz. A set of TP, SP, 
and SSPs were observed at each observation station 
during each deployment. Only one set of observations 
per observation station, and each station has both 
sound velocity observations and temperature-salinity 
observations. In this study, we used the bathymetric 
data measured by the Multibeam Echosounder (called 
“R2SONIC 2024”, R2Sonic LLC, USA) and the 
Singlebeam Echosounder (called “Haiying Y1200”, 
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 Fig.1 The study area and the space distribution of fi eld observation stations 
The red fi ve-pointed star indicates the observation stations used as validation data in the experiment, while the black solid circle indicates the observation 
stations used as experimental data.
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Wuxi Haiying-Cal Tec Marine Technology Co. Ltd., 
China) as the boundary of the seabed topography (as 
shown in Fig.1). 

 SSPs, TP, and SP observations are presented in 
Fig.2. Diff erent colors are just used to denote profi le 
observations at diff erent stations without any other 
meanings. The changing trends of sound velocity 
are consistent with those of temperature and salinity, 
especially a high correlation with temperature, which 
follows the physical properties of oceanic sound 
velocity (Fig.2). Quality control of the SVP and CTD 
observation profi le data includes automatic quality 
control, gross validity checks, temporal consistency 
checks, and spatial checks. Since the main content 
of this paper is to investigate the feasibility of the 
STC-MG3DVar method in the construction of high-
precision spatiotemporal resolution SSPs, the detailed 
quality control of observational data will not be 
described here. Besides, we interpolated the SSPs, TP, 
and SP to 0.2-m vertical resolution using the Akima 
interpolation algorithm. 

 2.2 STC-MG3DVar 

 To extract the multi-scale information of ocean 

observations sequentially, Xie et al. (2005) proposed 
a multigrid 3DVar (MG3DVar) method which can 
minimize the cost function on a coarse grid to obtain 
long-wave information, and on a relative fi ne grid 
to extract long- and short-wavelength information 
from the observations in turn. The basic idea of the 
multigrid 3DVar implementation can be found in 
(Xie et al., 2005; Li et al., 2008, 2010, 2013), and it 
is briefl y reviewed here. Generally, the cost function 
of MG3DVar consists of two parts: background 
fi eld item  J  b  and observation fi eld item  J  o . The cost 
function in the incremental form of the MG3DVar for 
the  n th level grid takes the following form: 

  J  (  n  ) ( δ  X  (  n  ) )= J  b  (  n  ) + J  o  (  n  ) =1/2( δ  X  (  n  )  T  δ  X  (  n  ) )+1/2( H  (  n  )  δ  X  (  n  ) –
                              Y  (  n  ) )T      R  (  n  )–1 ( H  (  n  )  δ  X  (  n  ) – Y  (  n  ) ),( n =1, 2, 3, ∙∙∙,  N ),          (1) 
 where δ X  is the analysis increment vector,  H  is a 
simple bilinear interpolation operator from the gird 
to the observation location,  R  is the observational 
error covariance matrix,  Y  denotes the observational 
innovation vector, T and -1 represent the transpose 
matric and inverse matric, respectively; the  N  is 
the fi nal level, which depends on the observations. 
 Y  (1) = Y  obs – H  (1)  X  b  is the diff erence between the 
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 Fig.2 Profi le observations in the northern coastal area of the Shandong Peninsula 
 a. sound velocity profi le observations; b. temperature profi le observations; c. salinity profi le observations. 
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observations and the interpolated background at the 
observation locations in the fi rst level grid, and in the 
other grid levels it is defi ned as: 

  Y  (  n  ) = Y  (  n–  1) – H  (  n–  1)  δ  X  (  n–  1) , ( n =2, 3, ∙∙∙,  N ).                       (2) 
 The fi nal analysis value  X  a  is equal to the sum of 

the analysis value increment  δ  X  for all grids level and 
the background value  X  b : 

 ( )
a b

1
.

N
n

n




 X X X           (3) 

 In this study, the cost function of STC-MG3DVar 
is similar to Eq.1 and the control variable of the 
cost function is sound velocity increment  δ  X   (  n  )

SV . The 
distribution of the SVP and CTD observations is 
relatively homogeneous and extremely accurate, 
that is, complete reliance on the observation fi eld 
and exclusion of the background fi eld, so the cost 
function of STC-MG3DVar omits the background 
term  J  b  and the spatial extension is then represented 
by the grid spacing. Besides, the smooth term of 
sound velocity observations, at the same time, is 
introduced into the cost function of STC-MG3DVar 
to reduce the bilinear interpolation truncation error 
eff ect (Li et al., 2010) and the smoothing penalty term 
itself can damp small scale noise and make solution 
unique with enough but still sparse observations. Li 
et al. (2013) discussed the meaning of the smoothing 
term in detail. Therefore, the incremental form of the 
cost function of STC-3DVar for the  n th level gird is 
simplifi ed to: 

J (  n  ) ( δ X   (  n )
SV ) = J  (  n  ) s  + J  (  n  ) o   , ( n =1, 2, 3, ∙∙∙,  N ),                          (4) 

 where s the incremental form of control variables for 
the  n  th  level gird, and in this study,  N  is equal to 2; the 
subscript s denotes the smooth term (penalty term) and 
o represents the SVP sensor observation data term: 

  J  (  n  ) s    =1/2 δ X  (  n )
SV

T   S  (  n )
SV δ X   (  n )

SV,                                               (5) 

  J  (  n  ) o   =1/2( H  (  n )
SV δ X    (  n )

SV
   – δ Y    (  n )

SV
  ) T  R (  n )

SV ( H   (  n )
SV

  δ X    (  n )
SV

   – δ Y  (  n )
SV

  ),  (6) 

 where the smooth matrix  S  (  n )
SV  in the smooth term is 

derived from the spatial integral of the square of 
Laplacian of control variables  δ X  (  n )

SV
    at the  n  th  level 

grid points. 
 To obtain a more reasonable and accurate analysis 

of the sound velocity, the Chen-Millero sound 
velocity empirical formula, whose coeffi  cients are 
given in Chen and Millero (1977), is incorporated 
into the cost function of STC-MG3DVar as a weak 
constraint condition. Therefore, the fi nal cost function 
of STC-MG3DVar is expressed as follows: 

  J  (  n  ) ( δ X  (  n )
SV

  )= J   (  n  ) s  + J  (  n  ) o  + J  (  n  ) w  , ( n =1, 2, 3, ∙∙∙,  N ),                   (7) 
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 where w denotes the weak constrain term;  X  SV  b  
represents the background value of the seawater 
sound velocity, and in this study,  X SV b  is equal to the 
average of the sound velocity at each water layer; the 
matrix    1

PSV
n R   is an error covariance matrix for the 

empirical formula for the sound velocity of seawater; 
the function  SV ( T  obs ,  S  obs ,  P ) denotes the Chen-
Millero sound speed equation,  T  obs ,  S  obs , and  P  are 
the observation values of temperature, salinity, and 
pressure corresponding to the sound velocity of each 
water layer, respectively. 

 In STC-MG3DVar, the  δ X  (  n )
SV

   (“analysis”) is 
obtained by minimizing the cost function (Eq.7), 
 δ X    (  n )

SV
  =arg min  J  (  n  ) ( δ X  (  n )

SV
  ). The gradient function of the 

cost function is expressed: 
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 Finally, the sound velocity analysis value is 
expressed as follow: 

  
bSV SV SV

=1
.

N
n

n
 X X X              (10) 

 3 EXPERIMENT AND EVALUATION 
CRITERIA 
 3.1 Experimental setup 

 To verify the accuracy of the assimilation results 
of diff erent assimilation algorithms, independent 
sample experiments are conducted. We selected the 
SSPs observation data of No. 11 and No. 24 as the 
verifi cation data and other remaining data as the 
assimilation input data. Observation data (including 
SSPs, TP, and SP data) from No. 11 and No. 24 
observation stations (the red Pentastar as shown 
in Fig.1) are only used to verify the accuracy of 
the assimilation results, not as input data for the 
assimilation experiment. The remaining observation 
data (the black solid circle as shown in Fig.1) are used 
as input data for these assimilation experiments. 

 We designed six comparison experiments, and 



Vol. 4162 J. OCEANOL. LIMNOL., 41(1), 2023

the detailed parameter settings of these six groups 
of comparison experiments are shown in Table 1. In 
all experiments, the time resolution is half an hour, 
the horizontal resolution is 0.002°×0.002°, and the 
vertical resolution is 1 m. The horizontal range of 
these experiments is within 37.575°N–37.605°N, 
122.06°E–122.12°E. In EXP1-3, the SSPs of the No. 
11 station is used as reference profi le observations to 
verify the accuracy of SSPs constructed by diff erent 
assimilation schemes, and the SSPs of the No. 24 
station is used as reference profi le observations in 
EXP4-6. In EXP1&2, to align the time of constructed 
SSPs with that of No. 11, the time range of EXP1&2 
is set to be from 7:22:55 (UTC+08) to 11:22:55 
(UTC+08), and the time resolution was half an 
hour (the observation time of No. 11 is 08:52:55). 
Similarly, the time range of EXP4&5 is from 07:03:23 
(UTC+08) to 11:33:23 (UTC+08), and the time 
resolution is also half an hour (the observation time of 
No. 24 is 10:33:23). In addition, we set the grid points 
(the horizontal coordinates of the constructed SSPs) 
exactly at the spatial location of the independent 
sample observation station (the horizontal coordinates 
of No. 11 and No. 24). 

 First, to investigate whether the weak constraint 
term can optimize sound velocity through the physical 
relationship between sound velocity and temperature-
salinity simultaneously to obtain more reasonable and 
accurate SSPs, we set up EXP1&2 for comparison. 
The EXP1 uses the STC-MG3DVar to construct SSPs, 
and the EXP2 uses the space-time multigrid 3DVar 
method without the temperature-salinity constraint 
term (referred to as the ST-MG3DVar) to construct 
SSPs. Second, in the EXP3, the spatial multigrid 

3DVar method with weak constraint term (referred 
to as the SC-MG3DVar) is used to construct SSPs, 
which considers that all sound velocity observations 
are at the same time. Third, to verify whether high-
precision SSPs can be obtained at the edge of the 
study area, where there are few available sound 
velocity and thermohaline observation data within 
the space-time dimension radius of assimilation, the 
same experiments are carried out at EXP4-6. 

 In addition, it is also the key to selecting the 
optimal empirical formula of sound velocity, which 
is most suitable for the calculation of sound velocity 
in our study sea areas since diff erent sound velocity 
empirical formulas are strongly dependent on the 
respective application conditions. The most likely 
error sources of the sound velocity empirical formula 
mainly come from the diff erent application ranges 
of the formula in diff erent ocean areas. In this study, 
compared with the Coppens empirical formula and 
the Mackenzie empirical formula, the Chen-Millero 
sound velocity empirical formula is more suitable for 
the sea area of this study. The statistical errors of the 
three classic sound velocity empirical formulas are 
shown in Table 2. 

 3.2 Performance evaluation criteria 

 The SSPs constructed by diff erent assimilation 
methods (as described in Table 1) were compared with 
the observed SSPs to determine the accuracy of the 
proposed STC-MG3DVar method. In this study, we 
use the root-mean-square error (RMSE), the Pearson 
correlation coeffi  cient ( R ), maximum absolute error 
and minimum absolute error as evaluation metrics. 
The RMSE can refl ect the closeness of two SSPs, and 
the  R  represents the similarity between the observed 
SSPs and the constructed SSPs. The maximum 
absolute error represents the limit error of diff erent 
methods and the smallest error indicates the stability 
of the diff erent methods. The smaller the RMSE, the 
higher the accuracy of the algorithm. The closer the 
 R  is to 1, the better the results are. The smaller the 

 Table 2 The RMSE of diff erent empirical formulas of 
sound velocity 

 The empirical formula of sound velocity  RMSE (m/s) 

 Chen-Millero empirical formula  0.270 

 Coppens empirical formula  0.485 

 Mackenzie empirical formula  0.304 

 Table 1 Experimental settings 

 Experiment   Resolution  Horizontal coordinate range  Time range  Reference SSPs  Assimilation method 

 EXP1 

 Horizontal: 0.002°×0.002° 
 Vertical: 1 m 
 Time: 0.5 h 

 37.575°N–37.605°N 
 122.06°E–122.12°E 

 07:22:55–11:22:55 
 No. 11 

 STC-MG3DVar 

 EXP2  ST-MG3DVar 

 EXP3  08:52:55  SC-MG3DVar 

 EXP4 
 07:03:23–11:33:23 

 No. 24 

 STC-MG3DVar 

 EXP5  ST-MG3DVar 

 EXP6  10:33:23  SC-MG3DVar 
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maximum error and minimum error, the more stable 
the algorithm. If the minimum error can be small 
enough, it means that the SSPs constructed through 
our algorithm, STC-MG3DVar, is suffi  ciently stable. 
These formulas are expressed as follows: 
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 maximum absolute error=max| X  SVa,  i – X  SV  obs  ,  i |, 
( i =1, 2, 3, ∙∙∙,  M ),   (13) 

 minimum absolute error=min| X  SVa,  i – X  SV  obs  ,  i |,
( i =1, 2, 3, ∙∙∙,  M ),   (14) 

 where  M  is the number of sound velocity data in each 
SSP, X SVa,  i  is the  i  th  value of the assimilated sound 
velocity, X SV  obs  ,  i  is the  i  th  sound velocity observation, 

aSVX  is the average of all assimilation sound velocity 
values, and 

obsSVX  is the average of all sound velocity 
observations. 

 4 RESULT AND DISCUSSION 

 Based on the experimental setup in Section 3.1, the 
SSPs constructed by diff erent assimilation methods 
(STC-MG3DVar, ST-MG3DVar, and SC-MG3DVar) 
is a gridded fi eld that changes over time, and its time 
resolution is half an hour, the horizontal resolution 
is 0.002°×0.002°, and the vertical resolution is 1 m 
in this study. In EXP1&2, a total of nine constructed 

SSPs are obtained at the location of the No. 11 station 
from 7:22:55 to 11:22:55. Similarly, in EXP4&5, 
the total number of constructed SSPs at the location 
of No. 24 station from 07:03:23 to 11:33:23 is 10. 
In EXP3&6, only one SSP is constructed at the 
location of the Nos. 11 & 24 station, since the SC-
MG3DVar believes that all SSPs observations are at 
the same time. Table 3 presents the RMSE and  R  for 
all experiments. 

 4.1 The STC-MG3DVar comparison to the ST-
MG3DVar 

 Figure 3 shows the RMSE and the  R  between the 
observed SSPs of No. 11 and these SSPs constructed 
by the STC-MG3DVar (EXP1) and ST-MG3DVar 
(EXP2). The RMSE of the STC-MG3DVar-constructed 
SSPs is minimal at 08:52:55 (the observation time 
of No. 11) with an RMSE of 0.150 m/s (Fig.3a). 
Similarly, the  R  at this moment is a maximum value 
of 0.951 (Fig.3b). The SSPs constructed by ST-
MG3DVar in EXP2 has the smallest RMSE at 8:52:55 
with an RMSE of 0.163 m/s (Fig.3a). Meanwhile, the 
 R  is the maximum value at this moment with a value 
of 0.934 (Fig.3b). The RMSE of STC-MG3DVar-
constructed SSPs is slightly smaller than that of ST-
MG3DVar-constructed SSPs at all times, and the  R  of 
the former’ SSPs is greater than the latter’s SSPs at 
all times (Fig.3).  

 The RMSE and the  R  between the observed SSPs 
of No. 24 and these SSPs constructed by the STC-
MG3DVar (EXP4) and ST-MG3DVar (EXP5) are 
shown in Fig.4. The STC-MG3DVa-constructed SSP 
has the smallest RMSE of 0.114 m/s at 10:33:23 (the 
observation time of No. 24) (Fig.4a). Meanwhile, the 
 R  is the maximum with a value of 0.897 (Fig.4b). 
Clearly, the RMSE of the SSPs constructed by ST-
MG3DVar is a minimum value at 10:33:23 and the 
RMSE is 0.130 m/s (Fig.4a). Similarly, the  R  at this 
moment is the maximum value of 0.860 (Fig.4b). 
Similarly, the RMSE of STC-MG3DVar-constructed 
SSPs is slightly smaller than that of ST-MG3DVar-

 Table 3 The RMSE and  R  of all experiments 

 Experimental number  RMSE (m/s)   R  

 EXP1  0.150  0.951 

 EXP2  0.163  0.934 

 EXP3  0.302  0.921 

 EXP4  0.114  0.897 

 EXP5  0.130  0.860 

 EXP6  0.184  0.876 
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 Fig.3 The RMSE (a) and  R  (b) between the observed SSPs 
and the SSPs constructed by STC-MG3DVar (blue 
solid line) and ST-MG3DVar (orange dotted line) in 
EXP1&2 
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constructed SSPs at all times, and the  R  of the 
former’s SSPs is greater than the latter’s SSPs at all 
times (Fig.4). 

 Combining the results shown in Figs.3–4 and 
Table 3, it can be seen that the STC-MG3DVar 
method eff ectively improves the accuracy of 
constructed SSPs, which has smaller RMSE and 
larger  R  compared with the ST-MG3DVar. The 
results in Table 3 show that the RMSE of the STC-
MG3DVar-constructed SSPs in EXP1 (EXP4) was 
7.98% (12.31%) lower than that of ST-MG3DVar 
in EXP2 (EXP5) at observation time (08:52:55). In 
the STC-MG3DVar method, the novel opportunity of 
assimilating temperature-salinity observations is to 
provide positive constraints to sound velocity, which 
introduces new observation information closely 
linked to sound velocity changes. The temperature-
salinity weak constraint term can optimize the sound 
velocity by the physical relationship between the 
sound velocity and the temperature-salinity to obtain 
more reasonable and accurate SSPs.  

 In addition, the STC-MG3DVar-constructed SSPs 
before 9:03:23 shows a negative correlation with the 
observed SSPs in EXP4 (Fig.4b). In this study, we just 
observed from No. 1 to No. 27 stations in sequence 
(Fig.1) similar to the way of underway sailing. In 
other words, there is only one set of observation data at 
each observing station (sound velocity observations, 
temperature and salinity observations). As is known 
to all, due to the fatal shortcoming of traditional SSPs 
observation methods, the sound velocity observation 

data are very sparse in time and space. This is the 
fundamental reason why we proposed this algorithm 
in this study. Our algorithm, STC-MG3DVar, can 
use discrete SSPs observation data to construct 
high-precision spatiotemporal resolution SSPs. In 
EXP4, we set the time range (07:03:23–11:33:23) 
to approximately the time range of No. 1 and No. 
27 observation station and the horizontal range is 
also within the space range of these observation 
stations. In the time dimension, it is equivalent to 
extrapolating in the time dimension before 9:03:20, 
so there will be a negative correlation coeffi  cient. As 
time progressed, observation data began to participate 
in the assimilation of the sound velocity at the grid 
of the No. 24 observation station, so the correlation 
coeffi  cient changes from negative to positive with 
time (as shown in Figs.4–5). The sound velocity 
and thermohaline observations are roughly evenly 
distributed in the spatial dimension and cover the 
survey area in this study, but on the one hand, the 
observation data in the spatial dimension is still too 
few at the edge of the study area; on the other hand, 
the distribution of sound velocity and temperature 
and salinity observations in the time dimension is 
also extremely small. The above reasons cause the 
low accuracy of constructed SSPs  at the edge of 
the study area. Due to insuffi  cient sound velocity 
observation data, the accuracy of the constructed 
SSPs is not high enough in the marginal area of 
the study area. As we all know, observing sound 
velocity and temperature-salinity has always been 
diffi  cult and costly despite its profound signifi cance 
in-fi eld measurement. Thus, how to design optimal 
observations in the ocean has always been critical 
before the beginning of ocean observation studies. In 
future research, we will consider adopting a model-
based observation design strategy (Mu, 2013; Zhang 
et al., 2020), which is a systematic project seeking 
to observe the ocean eff ectively and economically 
to collect fi eld sound velocity observation data, to 
achieve control of the sound velocity assimilation in 
the entire research area. In addition, we will consider 
adding ocean numerical models to impose dynamic 
constraints on the assimilation process of this method 
in the following research to ensure the accuracy of the 
SSPs constructed by the proposed method. 

 4.2 The STC-MG3DVar comparison to the SC-
MG3DVar 

 As shown in Figs.3–4, only the constructed SSPs 
which is contemporaneous with the observed SSPs 
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 Fig.4 The RMSE (a) and  R  (b)   between the observed SSPs 
and the SSPs constructed by STC-MG3DVar (blue 
solid line) and ST-MG3DVar (orange dotted line) in 
EXP4&5 
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can have a minimum RMSE and a maximum  R . In 
other words, only the constructed SSPs at the same 
time as observed SSPs can be closer to the “real” 
SSPs. It is well known that the sound velocity 
evolves not only in the space dimension but also in 
the time dimension. The above experimental results 
also prove that the evolution of sound velocity in 
the time dimension in the proposed method, the 
STC-MG3DVar, is tenable. Furthermore, as can be 
seen from Table 3, the RMSE of SC-MG3DVar-
constructed SSPs is 0.302 m/s and 0.184 m/s in 
EXP3&6, respectively. The RMSE results in Table 3 
show that the RMSE of STC-MG3DVar-constructed 
SSPs in EXP1 (EXP4) was 50.33% (38.04%) lower 
than that of ST-MG3DVar-constructed SSPs in 
EXP3 (EXP6). The SC-MG3DVar believes that 
both sound velocity observations and thermohaline 
observations are at the same time, that is, the SC-
MG3DVar believes that sound velocity observations 
and thermohaline observations were only distributed 
in space dimension, but not in the time dimension. 

In EXP3&6, the SC-MG3DVar does not consider the 
variations of the sound velocity in the time dimension, 
it assumes that the observed sound velocity is all at 
the same time. Obviously, such assumptions lead to 
greater errors in the SC-MG3DVar method. However, 
the STC-MG3DVar can extract the spatiotemporal 
correlation of the sound velocity observations and 
thermohaline observations, especially the correlation 
information of time dimension. Based on the above 
analysis, a conclusion can be drawn that the STC-
MG3DVar method greatly improves the construction 
accuracy of SSPs compared with the SC-MG3DVar 
method. 

 4.3 The vertical profi le error of constructed SSPs 

 The vertical profi le error of constructed SSPs is 
calculated at the observation time and the location 
of referenced SSPs in EXP1–6. In other words, only 
the SSP constructed at 08:52:55 is compared with the 
SSPs observation values of No. 11 in EXP1–3, and 
only the SSP constructed at 10:33:23 is compared 
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with the SSPs observation value of No. 24 in EXP4–
6. Table 4 represents the maximum absolute errors 
and the minimum absolute errors for all experiments. 

 The SSPs constructed by diff erent assimilation 
methods (Fig.6) show that the SSP constructed by 
STC-MG3DVar and ST-MG3DVar is much closer to 
the SSPs observations than the SSPs constructed by 
SC-MG3DVar. With the advantage of the temperature-
salinity constraint term and the spatiotemporal 
correlation information, the STC-MG3DVar method 
we proposed works better than the ST-MG3DVar 
and the SC-MG3DVar in constructing high-precision 
spatiotemporal resolution SSPs. 

 The vertical profi le errors of constructed SSPs 
show that the amplitude of vertical profi le error of 
STC-MG3DVar (EXP1&4) is much smaller than 
that of ST-MG3DVar (EXP2&5) and SC-MG3DVar 
(EXP3&6) (Fig.7). The maximum error of STC-
MG3DVAR, 0.358 m/s, is much smaller than the 
maximum error of ST-MG3DVar (0.512 m/s) and 
SC-MG3DVar (0.777 m/s), and the minimum error 
of STC-MG3DVAR, 0.016 m/s, is smaller than 
the minimum error of ST-MG3DVar (0.019 m/s) 
and SC-MG3DVar (0.074 m/s) (Fig.7a; Table 4). 
The maximum error of STC-MG3DVar (EXP4), 
0.352 m/s, is much smaller than the maximum error of 
ST-MG3DVar (0.396 m/s, EXP5) and SC-MG3DVar 
(0.836 m/s, EXP6), and the minimum error of STC-
MG3DVar (EXP4), 0.002 m/s, is smaller than the 
minimum error of ST-MG3DVar (0.003 m/s, EXP5) 

and SC-MG3DVar (0.005 m/s, EXP6) (Fig.7b; 
Table 4), based on which we can see that the STC-
MG3DVar works better than the ST-MG3DVar and 
the SC-MG3DVar from the sea surface to the seabed, 
especially from the sea surface down to 10 m. In 
addition, the maximum and minimum errors of the 
STC-MG3DVar are smaller than that of the ST-
MG3DVar and the SC-MG3DVar, regardless of the 
No. 11 observation station at the center of the study 
area or the No. 24 observation station at the edge of 
the study area. All this shows that the STC-MG3DVar 
has better stability in constructing SSPs than the ST-
MG3DVar and the SC-MG3DVar. 

 Combining the results in Figs.6–7, it can be seen 
that the profi le error of sound velocity is relatively 
large from the sea surface down to 10 m in all 
experiments. This is caused by the following two 
aspects: fi rstly, the structure and properties of SSPs 
are diff erent, and the sound velocity observations 
are inhomogeneous from the sea surface down to 
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 Fig.7 The vertical profi le error between the SSPs 
constructed by diff erent assimilation methods and 
SSPs observations 
 a. the profi le error of constructed SSPs in EXP1–3 at 08:52:55; b. 
the profi le error of constructed SSPs in EXP4–6 at 10:33:23. 

 Table 4 Maximum and minimum profi le error of 
constructed SSPs 

 Experimental number  Maximum absolute 
error (m/s) 

 Minimum absolute 
error (m/s) 

 EXP1  0.358  0.016 

 EXP2  0.512  0.019 

 EXP3  0.777  0.074 

 EXP4  0.352  0.002 

 EXP5  0.396  0.003 

 EXP6  0.836  0.005 
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 Fig.6 The observed SSPs and the constructed SSPs 
 a. the observed SSPs of No. 11 station and the constructed SSPs at 08:52:55 
in EXP1–3; b. the observed SSPs of No. 24 station and the constructed 
SSPs at 10:33:23 in EXP4–6. 
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10 m; secondly, the variation of sound velocity and 
temperature-salinity near the sea surface is complex 
and greatly infl uenced by environmental factors. 
However, the STC-MG3DVar still works better than 
the ST-MG3DVar and SC-MG3DVar, and the profi le 
error of STC-MG3DVar is less than 0.4 m/s from the 
sea surface down to 10 m. In addition to the STC-
MG3DVar, the ST-MG3DVar and SC-MG3DVar are 
less eff ective in the range from sea surface down to 
10 m, whose profi le errors are almost always larger 
than 0.4 m/s, and the amplitude of the profi le error is 
very small in water depths below 10 m, all less than 
0.4 m/s (Fig.7). Here, the sound velocity is relatively 
stable, and the properties of sound speed are the 
same, which is mainly infl uenced by pressure. 

 Results show that the precision of the 
constructed SSPs can be eff ectively improved by 
assimilating temperature-salinity observations in 
the STC-MG3DVar method, which introduces new 
temperature-salinity observations information closely 
linked to sound velocity changes by the Chen-
Millero sound velocity empirical formula. Generally 
speaking, introducing a new weak constraint can 
reduce the analysis errors, and the improvement 
degree of the analysis result in the STC-MG3DVar 

partially depends on which sound velocity formula 
is selected in the concerned sea areas. In addition, 
the precision of STC-MG3DVar-constructed SSPs 
is signifi cantly improved after considering that the 
speed of sound evolves with time, and the analysis of 
the STC-MG3DVar may refl ect the characteristics of 
the real ocean sound velocity fi eld. 

 4.4 The sound velocity horizontal contour map 

 The time-varying sound velocity contour maps of 
EXP1 at the depth of 1 m, 15 m, and 30 m are shown 
in Figs.8–10, respectively. It is easy to see from Fig.8 
that the sound velocity varies considerably at the 
depth of 1 m (near the sea surface), from 1 507.4 m/s 
to 1 512.7 m/s. Also, we found that the sound velocity 
gradually increases with time mainly due to the 
increasing solar radiation energy received by the 
sea surface and the increasing temperature, and then 
the speed of sound gradually increases. The sound 
velocity is about within the range of 1 506.8 m/s to 
1 509.1 m/s at the depth of 15 m in EXP1 (Fig.9). 
The seawater under the sea surface receives less 
energy radiation from the sun than the sea surface, 
so the sound velocity is lower than that near the sea 
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 Fig.9 The time-varying sound velocity contour map with an interval of half-hour from 7:22:55 to 11:22:55 at the depth of 
15 m in EXP1 
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surface. The sound velocity varies very little and very 
steadily changes from 1 507.0 m/s to 1 508.2 m/s at 
the depth of 30 m in EXP1 since the pressure mainly 
dominates the variation of the sound velocity in this 
depth (Fig.10). 

 5 CONCLUSION 

 Constructing the high-precision spatiotemporal 
resolution SSPs is especially signifi cant for modern 
hydrographic surveys, especially in coastal areas. 
The high-precision spatiotemporal resolution SSPs 
can be used for acoustic ray-tracing computations in 
hydrographic surveys. In addition, knowledge of the 
SSPs structure at the time of a hydrographic survey 
allows for improved survey planning, data collection, 
and data processing procedures. In this study, based 
on the MG3Dvar, the STC-MG3DVar method 
is proposed for constructing the high-precision 
spatiotemporal resolution SSPs in coastal areas. 

 Evaluating the precision of STC-MG3DVar-
constructed SSPs shows promising results in the 
northern coastal area of the Shandong Peninsula. The 
experimental results show that the accuracy of STC-
MG3DVar is better than the ST-MG3DVar and the 
SC-MG3DVar, which provides an alternative method 
for high-precision spatiotemporal resolution SSPs. 
The main conclusions can be drawn as below: 

 (1) The STC-MG3DVar works better than the ST-
MG3DVar method (Figs.3–4; Table 3). The results 
of EXP1&3 (EXP4&5) show that the accuracy of 
STC-MG3DVar is 50.33% (38.04%) higher than 
that of SC-MG3DVar. The proposed method, STC-
MG3DVar, can extract the spatiotemporal correlation 
of the sound velocity observations and thermohaline 
observations, especially the correlation information 
of time dimension. 

 (2) Introducing the Chen-Millero sound velocity 
empirical formula as a weak constraint to the 
cost function of the STC-MG3DVar method can 
optimize sound velocity by the physical relationship 
between sound velocity and temperature-salinity 
simultaneously to obtain more accurate SSPs. It 
can be seen from Table 3, the experimental results 
show that the accuracy of STC-MG3DVar is 7.98% 
(12.31%) better than the ST-MG3DVar which does 
not consider the constraint relation of temperature-
salinity on the sound velocity in EXP1&2 (EXP4&5). 

 (3) The STC-MG3DVar can also obtain high-
precision SSPs in the region where there is few sound 
velocity observations and thermohaline observations 
information, and the RMSE of STC-MG3DVar-

constructed SSPs in EXP4 is 0.114 m/s, and the 
correlation coeffi  cient is 0.897 (Fig.4; Table 3) 

 The STC-MG3DVar-constructed SSPs in the 
northern coastal area of the Shandong Peninsula 
reveals that the method we proposed could provide 
high-precision spatiotemporal resolution SSPs for 
other coastal areas around the world. However, the 
study reported here has several shortcomings. (1) The 
sound velocity and thermohaline observations are 
roughly evenly distributed in the spatial dimension 
and cover the survey area in this study, but on the one 
hand, the observation data in the spatial dimension 
is still too few at the edge of the study area; on the 
other hand, the distribution of sound velocity and 
temperature and salinity observations in the time 
dimension is also extremely small. The above reasons 
cause the low accuracy of the SSPs constructed at 
the edge of the study area. (2) Due to insuffi  cient 
sound velocity observation data, the accuracy of the 
constructed SSPs is not high enough in the marginal 
area of the study area. As we all know, observing sound 
velocity and temperature-salinity has always been 
diffi  cult and costly despite its profound signifi cance 
in-fi eld measurement. Thus, how to design optimal 
observations in the ocean has always been critical 
before the beginning of ocean observation studies. In 
future research, we will consider adopting a model-
based observation design strategy and  adding ocean 
numerical models to impose dynamic constraints 
on the assimilation process of this method in the 
following research to ensure the accuracy of the SSPs 
constructed by the proposed STC-MG3DVar method. 
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