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  Abstract       Blooms of  Phaeocystis   globosa  have been reported accountable for massive fi sh mortality 
worldwide. The toxigenic mechanisms of  P .  globosa , however, remain largely unclear due to the multiple 
structures and/or synergistic or antagonistic eff ects of hemolytic compounds. External stressors could lead 
to the regulation of photoprotective or antioxidative defense system, as well as the potential hemolytic 
activity. Therefore, the light-induced photosynthetic system, including the accessory photosynthetic growth, 
the relative electron transfer rate (ETR), photosynthetic effi  ciency ( F  v / F  m ), quantum yield of photosystem II 
(Yield), together with the hemolytic activity of  P .  globosa  were investigated under variable environmental 
conditions in the present study. Results confi rmed that hemolytic activity of  P .  globosa  was initiated by the 
light, but inhibited by low temperature (16 °C), high light intensity (>100 μmol/(m 2 ·s)), and iron-limited 
conditions. Interestingly, the hemolytic activity was not impacted by photosynthetic electron inhibitors 
(Diuron, atrazine, paraquat, and dibromothymoquinone), which signifi cantly inhibited the photosynthetic 
activity of  P .  globosa . The correlated response of hemolytic and photosynthetic activity of  P .  globosa  under 
those environmental factors suggested that the hemolytic compounds of  P .  globosa  would be involved in the 
photosynthetic process but not in the electron transfer chain of  P .  globosa .  
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 1 INTRODUCTION 

 The genus  Phaeocystis  were globally distributed 
and extensive blooms were reported mostly along 
the European and Chinese coast (Schoemann et 
al., 2005). Ten  Phaeocystis  species were identifi ed 
morphologically and molecularly including 
 P .  globosa ,  P .  antarctica ,  P .  poucheti ,  P .  cordata , 
 P .  brucei ,  P .  jahnii ,  P .  amoeboidea ,  P .  giraudii , 
 P .  scrobiculata , and  P .  sphaeroides  (Shen et al., 
2018; Wang et al., 2021), among which,  P .  globosa  
(He et al., 1999) and  P .  poucheti  (Hansen et al., 2004) 
were reported toxic.  P .  globosa  giant colony were 
fi rst reported in coastal China since 1997 (Chen et al., 
1999), Viet Nam since 2002 (Qi et al., 2004; Hai et 
al., 2010), and the Arabian Sea (Madhupratap et al., 
2000), causing massive fi sh death (Liu et al., 2015), 
mussel mortalities (Peperzak and Poelman, 2008), 

power plant closure (Gong et al., 2018; Liu and Zhou, 
2018), and tourism closure (Nejstgaard et al., 2007; 
Blauw et al., 2010).   The estimated economic loss 
of  P .  globosa  reached ca. 35 million US dollars in 
South China Sea in 1997 (Qi et al., 2004), and ca. 
0.65 million US dollars in Phan Ri Bay of Vietnam in 
2002 (Doan et al., 2003).  

 The potential eff ects of  Phaeocystis  blooms include 
the production of hemolytic substance (He et al., 
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1999), dimethylsulfoniopropionate (DMSP), reactive 
oxygen species (ROS), and other polyunsaturated 
fatty acids (PUFA) (Van Leeuwe and Stefels, 2007; 
Sheehan and Petrou, 2020). Blooming of  P .  globosa  
can transform DMSP into dimethyl sulfi de (DMS) 
with the production of ~0.5 Tmol/a   (Mohapatra et al., 
2013). Polyunsaturated aldehydes (PUAs), converted 
from PUFA with the presence of ROS, may lead to the 
blood apoptosis of sea urchin or human cytotoxicity 
(Pohnert, 2005). Hemolytic activity of  P .  globosa  
posed the most threat to the environment and fi sheries 
(Yang et al., 2009; Liu et al., 2010). In addition, the 
giant colony of  P .  globosa , clogging the cooling 
system of power plant (Kang et al., 2020; Xu et al., 
2020) or forming mucilage to make gelatinous foam 
(Karlson et al., 2021) were recently reported as the 
major ecological impact in Asian waters. Meanwhile, 
 P .  globosa  blooms have infl uenced the viscosity 
change of seawater and leaded to the variation 
of marine ecological environment (Peperzak and 
Gäbler-Schwarz, 2012; Sheik et al., 2014).   In terms of 
hemolytic toxins, the known components are mainly 
glycolipids, unsaturated fatty acids, fatty acid amides 
and porphyrins (Hiraga et al., 2008; Henrikson et al., 
2010; Bertin et al., 2012). Hemolytic substance from 
one strain of  P .  globosa  was similar with the structure 
of digitonin (He et al., 1999). Those hemolysins 
function similarly as the detergent solubilization, 
digtonin or Triton X-100, which caused acute 
toxicities to aquatic animals, i.e.,  Artemia   salina , 
 Brachionus   plicatilis , and other zooplanktons (Yang 
et al., 2009). In additon, the synergetic eff ect of 
hemolytic toxins and ROS may show a critical role 
in fi sh killing during the blooms (Twiner and Trick, 
2000; Ling and Trick, 2010). 

 Now the question becomes that what would be the 
driver(s) of the toxicity of  P .  globosa . Previous studies 
indicated that light (Moisan et al., 2006; Guo et al., 
2007; Masotti et al., 2010), temperature (Selleslagh 
and Amara, 2008; Cao et al., 2015), and algicidal 
compounds (Yang et al., 2015; Zhang et al., 2017) 
could impact the hemolytic activity of  P .  globosa . 
The highest level of hemolytic activity was observed 
at 25 °C with the irradiance of 100 μmol/(m 2 ·s) 
and the N꞉P ratio of 16꞉1 (Cao et., 2015). With the 
increasing salinity (19–29), temperature (15–25 °C), 
and irradiance (14–38 μmol/(m 2 ·s), the production 
of CH 3 Cl and CH 3 Br increased accordingly (Yan et 
al., 2019). Superfl uous ROS of  P .  globosa  can be 
triggered by the algicidal compounds, such as cyclo-
(Pro-Gly), prodigiosin and combination of urocanic 

acid, N-acetylhistamine, and L-histidine (Zhuang et 
al., 2018). The production of DMSP in  P .  globosa  was 
found associated with low temperature (20 °C), high 
salinity (40) (Shen et al., 2011), acidic pH (pH=5) 
(Mohapatra et al., 2014), low ratio of N꞉P, and high 
concentrations of iron (Zhu et al., 2013).  

 Therefore, how would it possible that the hemolytic 
compounds of  P .  globosa  be driven by the external 
stresses? In this case, a serious experiment was 
designed to investigate the response of photosynthetic 
system and hemolytic activity of  P .  globosa  under 
the external stresses of light, temperature, iron, and 
algicidal compounds.  

 2 MATERIAL AND METHOD 

 2.1 Algae and culture condition 

 The strain of  P .  globosa  was isolated from the coast 
of Shantou, South China Sea in 1997 and obtained 
from Research Center of Harmful Algae and Marine 
Biology, Jinan University, China. All cultures were 
incubated in f/2-Si medium (salinity of 28 and pH 8) 
under a light꞉dark (L꞉D) cycle of 12 h꞉12 h at 25 °C 
with an irradiance of 90 μmol/(m 2 ·s). 

 Cell number was estimated using a hemacytometer 
every two days and growth rate was calculated by 
the diff erence in cell number during the exponential 
growth using the equation given by Guillard (1975).  
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 where  N  2  and  N  1  are the cell numbers at time  t  2  and  t  1.  

 2.2 Physical environment stress 

 The stress experiments were carried out at 
three temperatures (16, 22, and 28 °C), fi ve light 
intensities (30, 60, 100, 180, and 270 μmol/(m 2 ·s)) 
and three diff erent FeCl 3  concentrations (0, 10 -5 , and 
10 -7  μmol/L). Artifi cial seawater was used instead 
of natural seawater (Harrison et al., 1980) for two 
generations to preculture the algae in f/2-Si medium. 
The exponential growth phase of  P .  globosa  was 
inoculated into fresh f/2-Si medium to ensure the 
same initial density and cultured under designed 
conditions as shown in Table 1. The position of 
bottles was changed every day to reduce the eff ects 
of uneven lighting or temperature. All treatments 
were conducted in triplicate. Subsamples were 
collected every two days to determine cell density, 
photosynthetic fl uorescence, and hemolytic activity.  
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 2.3 Photoperiod experiments 

 A stock culture of  P .  globosa  was grown in a f/2-
Si medium at 25 °C under 90 μmol/(m 2 ·s) of cool-
white fluorescent illumination on a 12-h꞉12-h L꞉D 
cycle (light period 09꞉00–21꞉00). Subsamples were 
collected every four hours to determine cell density, 
photosynthetic fl uorescence and hemolytic activity. 
The experiment last for 24 h. 

 2.4 Photosynthetic electron inhibitors stress 

 Diuron, atrazine, dibromothymoquinone (DBMIB), 
and paraquat were chosen as four photosynthetic 
electron inhibitors. Certain amount of these inhibitors, 
0.1, 0.15, 0.1, and 4.5 mg/L for diuron, atrazine, 
DBMIB, and paraquat, respectively, were added into 
100 mL of exponential growth culture of  P .  globosa . 
Then samples were mixed and placed under 25 °C 
with an irradiance of 100 μmol/(m 2 ·s). Photosynthetic 
effi  ciency and hemolytic activity were detected after 
one hour.  

 2.5 Data analysis 

 2.5.1 Photosynthetic fl uorescence 

 Photosynthetic activity of samples was determined 
by measuring in-vivo chlorophyll fl uorescence of 
photosystem II (PS II) using a Phyto-pulse amplitude 
modulation (PAM) (Walz, Eff eltrich, Germany). 
Subsamples were taken and treated in darkness at 
25 °C for 5 min each. The temperature experiment 
was conducted in darkness under the corresponding 
temperature conditions. The photosynthetic effi  ciency 
( F  v / F  m ), the relative electron transfer rate (ETR), 

and quantum yield of photosystem II (Yield) were 
determined by Phyto-PAM. 

 2.5.2 Hemolytic activity assay 

 The hemolytic activity of  P .  globosa  was evaluated 
by rabbit erythrocytes described in Eschbach et 
al. (2001) and Ling and Trick (2010). The rabbit 
erythrocytes were taken from the auricular veins 
of New Zealand rabbits and washed twice in the 
erythrocyte lysis assay (ELA) buff er. For the hemolytic 
activity, algae subsamples were placed into 10-mL 
tubes and centrifuged at 6 000× g  for 10 min. Then 
the pallets were re-suspended in 400-μL ELA buff er 
and stored at -20 °C. Before detecting the hemolytic 
activity, the samples were crushed in an ice bath by an 
ultrasonic crusher under the conditions of 10% power 
(650 W), 50 s (pulse on 2 s, pulse off  1 s) to obtain 
the hemolytic toxin extract. One hundred and fi fty 
microlitre of  P .  globosa  hemolysin extract and 150 μL 
of 0.6% rabbit erythrocytes were mixed in a 1.5-mL 
centrifuge tube (As). After centrifugation of the same 
volume of hemolysin buff er and rabbit erythrocytes, 
the absorbance of the supernatant was measured to 
eliminate the background value of erythrocytes (Aa). 
The absorbance of the supernatant was measured as 
the negative control (Ab) after centrifugation of the 
same volume of hemolysin extract and erythrocytes 
buff er. The positive control was the absorbance of the 
supernatant of completely lysed rabbit erythrocytes 
(Ac). All samples were well-mixed and placed under 
25 °C with an irradiance of 100 μmol/(m 2 ·s) for 
5 h, then centrifuged at 3 000 r/min for 10 min. The 
supernatant was used to measure the absorbance at 
414 nm in Microplate Reader (Biotek Synergy HT, 
USA). 

 The hemolytic activity was calculated according to 
the following formula (Ling and Trick, 2010): 

   As Aa AbHemolytic percent % 100%,
Ac

    (2) 

 where  As  is samples,  Aa  is algae background value, 
 Ab  is the background of erythrocytes (negative 
control), and  Ac  is the lysed rabbit erythrocytes 
(positive control). 

 The half eff ect concentration (EC 50 ) is the 
concentration of algae cells that lyse half of the 
rabbit’s red blood cells within 5 h. The EC 50  
was determined as the reaction algae density for 
subsequent experiments. The algae were gradually 
diluted into seven concentrations, 1.0, 2.0, 4.0, 8.0, 
20.0, 40.0, and 80.0×10 5  cells/mL. The EC 50  of  P . 
 globosa  was then determined as 1×10 6  cells/mL. 

 Table 1 The maximum growth rates (μ max ) of  P .    globosa  
during exponential growth under designed 
environmental conditions 

 Physical and chemical conditions   μ  max  (mean±S.D.) 

 Temperature (℃) 

 16  0.21±0.05 

 22  0.33±0.05 

 28  0.44±0.05 

 Irradiance (μmol/(m 2 ·s))   

 30  0.13±0.01 

 60  0.33±0.05 

 100  0.43±0.01 

 180  0.33±0.01 

 270  0.32±0.04 

 Iron (μmol/L) 

 0  -0.12±0.05 

 1×10 -7   0.31±0.04 

 1×10 -5   0.40±0.04 
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 2.5.3 Pigment analysis 

 The pigment samples were extracted every two 
days under light experiment as described in Buff an-
Dubau and Carman (2000) and Zapata and Garrido  
(1991). Fifty milliliter of subsamples were fi ltered 
through Waterman GF/F glass fi ber fi lters (0.7-μm 
nominal pore size, 25-mm diameter). Then the fi lter 
membranes were cut into pieces and incubated in 
3 mL of 95% methanol (v꞉v). Then the samples were 
centrifuged at 4 000× g  for 5 min. The supernatant was 
fi ltered into the chromatographic bottle for pigment 
detection. Pigment were determined using high 
performance liquid chromatography (HPLC)(Agilent 
1200) with C8 column (4.6 mm×150 mm, 3.5 μm) and 
UV-detector as described in Zapata et al. (2000). The 
mobile phase used in this study were eluent A: Milli-Q 
water, eluent B: acetonitrile, eluent C: methanol-
acetonitrile-acetone (volume ratio: 1꞉1꞉3), eluent D:  
methanol-acetonitrile-acetic acid pyridine (2꞉1꞉1). 
Elution time was 40 min and fl ow rate was 1 mL/min.  

 For each analysis, 30-μL standard pigment solution, 
90-μL methanol, and 40-mL Milli-Q water were 
mixed as standard working solution. All treatments 
were performed under low light. Standard pigments 
were obtained from DHI Inc. (Denmark) 

 2.5.4 Statistical analysis 

 One-way ANOVA and correlation analysis 
were used to test the diff erences of photosynthetic 
fl uorescence value, hemolytic activity, growth, and 
pigment under diff erent conditions. All statistical 
analysis were conducted using SPSS 19.0 software. 
Origin 8.0 and Sigmaplot 12.5 were used for graphic 
rendering. Signifi cant diff erences were determined 
using simple  t -test ( P <0.05). 

 3 RESULT 

 3.1 Eff ect of temperature 

 Low temperature inhibited the growth of 
 P .  globosa . The maximum growth rate ( μ  max ) of 
 P .  globosa  increased with the increasing temperature, 
reaching 0.21, 0.33, and 0.44 ( n =3) at 16, 22, and 
28 °C, respectively (Table 1). The exponential growth 
lasted 10 days in higher temperature, whereas 8 
days in low temperature, resulting to the highest cell 
concentration of 1.70×10 6  and 1.89×10 6  cells/mL in 
22 °C and 28 °C (Fig.1a).   

 The temperature stress on photosynthetic system II 
(PSII) of  P .  globosa  were also pronounced (Fig.1b). 

Signifi cant low values of  F  v / F  m  (circle), Yield (bar) 
and ETR (square) cells were observed in 16 °C 
(Fig.1b), indicating the temperature inhibition of 
photosynthetic activity of  P .  globosa . Photosynthetic 
effi  ciency ( F  v / F  m ) of  P .  globosa  kept the maximum 
level of 0.64±0.03 ( n =18) on average during the 
entire growth at 28 °C (Fig.1b), on the other hand, 
dramatically (One Way ANOVA,  P <0.05) decreased 
 F  v / F  m  from 0.63 at exponential growth to 0.47 when 
cell aged at 22 °C, and from 0.57±0.01 to 0.37±0.01 
at 16 °C (Fig.1b). Similar trends were observed in the 
eff ective quantum yield of PSII (Yield) and relative 
electron transport rate (ETR). The maximum Yield 
and ETR of  P .  globosa  were 0.58±0.01 and 34±0.6 
at exponential growth of  P .  globosa  at 28 °C. The 
colder (16 °C) and older (day 11) cells of  P .  globosa  
were under great stress, with Yield of 0.30 and ETR 
of 14.33, respectively. 

 The response of hemolytic activity of  P .  globosa  
was signifi cant as the varied temperatures (Fig.1c–d) 
and cell ages (Fig.1c). The cells cultured under low 
temperature, had low hemolytic activity during the 
entire growth phase. In contrast, hemolytic activity of 
 P .  globosa  signifi cantly increased (One Way ANOVA, 
 P <0.05) at day 4 in 22 °C and 28 °C, which varied 
from 23% to 51% and 63% on average, respectively 
(Fig.1c). In general, hemolytic activity of  P .  globosa  
increased with increasing temperature (Fig.1d). 
To evaluate the response of hemolytic activity to 
the photosynthetic system of  P .  globosa  under the 
temperature treatments, the correlations between 
hemolytic activity and  F  v / F  m , Yield, and ETR were 
analyzed in Fig.1e. The clear positive correlations 
were found between hemolytic activity (HA) and 
 F  v / F  m , Yield and ETR, with the  R  2  of 0.45, 0.43, and 
0.44, respectively.  

 3.2 Eff ect of iron 

 Iron signifi cantly aff ected the physiological and 
toxinological characteristics of  P .  globosa . Growth 
response of  P .  globosa  under the exposure of iron are 
presented in Fig.2a.  P .  globosa  did not grow without 
iron, but with small amount of iron, i.e., 10 -7  μmol/L, 
cells growth rapidly, reaching 0.49/d   (Fig.2a). And the 
maximum growth rate was found in 10 -5  μmol/L of 
FeCl 3  with 0.62/d.  

 As for the response of  F  v / F  m , Yield, and ETR, 
healthier cells of  P .  globosa , higher values of 
PSII activity, were observed under iron suffi  cient 
(10 -5  μmol/L) condition (Fig.2b), however, even the 
growth was not limited under iron low condition 
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(Fig.2a), but all photosynthetic activities were 
declined from  0.64 to 0.38 (F v / F m), 0.40 to 0.25 
(Yield), and 26.33 to 15.67 (ETR) at day 4. The  F  v / F  m , 
Yield, and ETR values of  P .  globosa  reached 0.09, 
0.03, and 1.67 under most stressful condition when 
cell aged (Fig.2b).  

 Iron also had a great impact on hemolytic toxin 
production of  P .  globosa . Lowest hemolytic activity 
was detected under iron free condition through all 
growth stage, with an average of 18% ( n =15) per 1 
million cells. On the other hand, hemolytic compounds 
were produced when iron was added. Higher 
hemolytic activity with around 43% was detected in 

iron suffi  cient cultural condition (Fig.2c & d).  
 Linear relationship of photosynthetic and hemolytic 

activity was found in Fig.2e. Similar as the temperature 
treatments, signifi cant positive relationship between 
 F  v / F  m  ( R  2 =0.45), Yield ( R  2 =0.43) and ETR ( R  2 =0.44) 
and hemolytic activity were also found.  

 3.3 Eff ect of irradiance 

 Light intensities of 30, 60, 100, 180, and 
270 μmol/(m 2 ·s) were used in the present study. 
In Fig.3a, the apparent growth was found in light 
treatments of over 60 μmol/(m 2 ·s). The growth rates 
varied but not signifi cant, with around 0.45/d on 
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average. The highest growth rate, 0.68/d, was found 
at light of 100 μmol/(m 2 ·s). In contrast,  P .  globosa  
grew much slower, ~0.13/d at the lowest irradiance 
(30 μmol/(m 2 ·s)). Interestingly, the exponential 
growth last 9 days in the highest two light treatments 
(I 180 , I 270 ), however, 11 days in the middle light 
treatments (I 100  and I 60 ), resulting to the signifi cant 
diff erence of maximum cell concentrations (180 000 
vs. 200 000 cells/mL).   

 Photosynthetic activities of  P .  globosa ,  F  v / F  m , 
Yield, and ETR are shown in Fig.3b. The two 

highest light treatments, I 180  and I 270 , stressed the 
photosynthetic activity of  P .  globosa  as the evidence 
of signifi cant low values of  F  v / F  m , Yield, and ETR 
(Fig.3b). Light of 100 μmol/(m 2 ·s) was suffi  cient for 
 F  v / F  m  (no declined through the entire growth), but 
shrunk after day 5 in both Yield and ETR. Low light, 
I 30  and I 60 , did not stress the PSII of  P .  globosa , but no 
signifi cant growth was found in I 30  (Fig.3a) .

 Hemolytic activities of  P .  globosa  under variable 
light treatments were shown in Fig.3c & d. Signifi cant 
high amount (One Way ANOVA,  P <0.05) of 
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hemolytic toxins were produced under the low light 
treatment, 30 μmol/(m 2 ·s), with an average of 72% 
through the entire growth, followed by 60, 100, 180, 
and 270 μmol/(m 2 ·s) (Fig.3d). Hemolytic activities 
reached 32%, 24%, 20%, and 13% under the light 
of 60, 100, 180, and 270 μmol/(m 2 ·s), respectively. 
The hemolytic activity decreased with the increasing 
irradiance during the whole exponential period 
(Fig.3c). Linear relationship between hemolytic 
and photosynthetic activity showed the signifi cant 
positive response of  F  v / F  m  ( R  2 =0.48), Yield ( R  2 =0.54), 

and ETR ( R  2 =0.59) (Fig.3e).  
 Pigment contents varied greatly with light and 

growth phase (Fig.4). Pigments of chlorophyll  c 3 (Chl 
 c 3), chlorophyll  c 2 (Chl  c 2), 19′-But-fucoxanthin 
(But-fuco), fucoxanthin (Fuco), 19-Hex-fucoxanthin 
(Hex-fuco), diadinoxanthin (Diad), and chlorophyll  a  
(Chl  a ) were detected in  P .  globosa . Chl  c 3, Chl  c 2, 
and Fuco were the dominant pigments in  P .  globosa . 
Cellular Chl  c 3 and Fuco of  P .  globosa , ranging from 
78% to 31%, decreased with the increasing light 
intensity. Photopigments were further investigated 
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with the relationship of hemolytic activity by 
principal component analysis (PCA) (Fig.5). The 
scores of the fi rst two principal components (PC1 and 
PC2) reached 49.9% and 24.5% for  P .  globosa . The 
hemolytic activity was apparent in highly positive 
PC1 space and appeared quite correlated with the 
pigments of Chl  c 2, Chl  c 3, and Fuco.  

 3.4 Daily cycle variation 

 Photosynthetic and hemolytic activity of 
 P .  globosa  were investigated in a daily cycle 
(Fig.6). The variations of  F  v / F  m , Yield, and ETR of 
 P .  globosa  are S-shaped. After entering the light 
time, the photosynthetic transfer effi  ciency gradually 
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increased, and reached the highest value at 7-h light 
exposure, then gradually decreased. The lowest  F  v / F  m  
were found after 3-h dark cycle. Similarly, hemolytic 
activity was higher during the day time, and lower 
during the night time. The maximum hemolytic 
activity of 74%±0.48% was obtained from 16꞉00 pm 
to 20꞉00 pm and the minimum of 64%±3.5% from 
8꞉00 am to 16꞉00 pm and from 0꞉00 pm to 8꞉00 am. 

 3.5 Eff ect of photosynthetic electron inhibitors 

 Four inhibitors of diuron, atrazine, DBMIB, and 
paraquat inhibited the photosynthetic activity of 
 P .  globosa , but had no eff ect on hemolytic activity 
(Fig.7).  F  v / F  m  decreased from 0.58 to 0.18 (diuron), 

0.43 (atrazine), 0.5 (DBMIB), and 0.55 (paraquat), 
respectively. Similar trends were observed in Yield 
and ETR of  P .  globosa . Diuron was the most eff ective 
inhibitors on PSII of  P .  globosa  (Oneway ANOVA; 
 P <0.05). 

 4 DISCUSSION 

  Phaeocystis   globosa  has attracted much attention 
and research due to the fundamental role and 
harmful algal bloom eff ects in many regions of the 
world (Blauw et al., 2010; Buchan et al., 2014). The 
temperature was one of the triggers that can aff ect 
the hemolytic activity of  P .  globosa  in many aquatic 
system (Cao et al., 2015; Kang et al., 2020). Cells of 
 P .  globosa  in an optimum temperature condition, i.e., 
24 and 27 °C (Xu et al., 2017) or 27–30 °C (Guo et 
al., 2007), produce more hemolytic toxins into the 
water system (Guo et al., 2007). Similar results were 
also found in our study (Fig.1). A higher hemolytic 
activity was observed in the faster growing rate of 
 P .  globosa  and the healthier cells (higher values of 
PSII activity).   

 Iron is an important nutrient in marine 
phytoplankton (Lill, 2009), and would be a limiting 
factor in the metabolism of phytoplankton during 
algal blooms (Larson et al., 2018). Furthermore, metal 
oxides are photocatalysts that facilitate photocatalysis 
by absorbing solar photons over a broad spectral 
range, ultimately enhancing the absorption of visible 
light (Zhou et al., 2018; Wan et al., 2019). As for 
 P .  globosa , trace amount of iron, i.e., 10 -7  μmol/L, 
can trigger the growth, as well as the active PSII 
and hemolytic activity (Fig.2). Iron suffi  cient would 
contributed the growth of  P .  globosa  (Slagter et al., 
2016) and enhanced the hemolytic activity (Liu et 
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al., 2006; Jiang et al., 2012). The stress of iron did 
not inhibit the growth, PSII and toxic activity in 
 P .  globosa , indicating the production of hemolytic 
compounds may associate with the growth and PSII 
activity.  

 Light was reported as the trigger of hemolytic 
compounds in many harmful algal species (Cao et al., 
2015; de Q Mendes et al., 2017; Wang et al., 2019). 
The saturation light for one isolate of  P .  globosa  was 
determined as 60 μmol/(m 2 ·s) and the photoinhibition 
point was 230 μmol/(m 2 ·s)   (Xu et al., 2017). Lower 
light, i.e., 80 μmol/(m 2 ·s), inhibited the growth rate 
of  P .  globosa  isolated from North Sea, but had no 
eff ect on photosynthetic activity (Hoogstraten et al., 
2012). Light intensities from 40 to 150 μmol/(m 2 ·s)  
 promoted  P .  globosa  isolated from the East China Sea 
to growth faster (Liu et al., 2011). In our study, the 
growth rate of  P .  globosa  did not change dramatically 
within the light of 60   to 270 μmol/(m 2 ·s). However, 
the exponential duration under higher light intensities 
(I 180  and I 270 ) were inhibited to 9 days compared to 
11 days under the relatively low light condition. 
Another evidence of  P .  globosa  preferred low light is 
that the value of  F  v / F  m  in low light (25 μmol/(m 2 ·s)) 
was 10%–20% higher than that in high-light intensity 
(Maat et al., 2016). As shown in Fig.3b, light of 60–
100 μmol/(m 2 ·s) was the most PSII active condition 
for  P .  globosa  in the present study. The continuous 
light at daytime may inhibit the growth of  P .  globosa , 
which may due to the circadian rhythm pattern of 
DNA synthesis and cell division (Wang et al., 2014). 

 The hemolytic activity of  P .  globosa  varied 
signifi cantly under high and low light conditions 
(Cao et al., 2015). This fi nding can be seen in the 
light and daily cycle experiments in the present study. 
The signifi cant high amount of hemolytic activity 
under light of 30 μmol/(m 2 ·s) (Fig.3c–d), and down 
regulated hemolytic activity at dark cycle (Fig.6) 
indicated that light was essential for  P .  globosa  to 
produce hemolytic toxins and a lower light promoted 
the production of the toxins.  

 Therefore, how could the hemolytic toxin 
production associate with the PSII activity of 
 P .  globosa ? The signifi cantly positive correlation 
between hemolytic and photosynthetic activity of 
 P .  globosa  under temperature, light, iron, and daily 
cycle treatments made us to further consider whether 
the hemolytic compounds would be photopigments 
associated compounds or related with the electron 
transfer chain? Thereafter, pigments as well as 
electron inhibitors experiments were conducted.  

 The main pigments of  P .  globosa  include Chl  c 3,  
magnesium-divinyl-pheo-porphyrin a5 monomethyl 
ester (Mg DVP), Chl  c 2, But-Fuco, Fuco, Hex-
Fuco, Diad, Chl  a , and Caroteniods (Caro) (Zapata 
et al., 2004). Chl  c 2, and  c 3 also are light-harvesting 
pigments (Bollivar, 2006), and part of the Fuco-chl  a / c  
protein complex. In addition, Chl  c 3, Fuco, and Chl 
 c 2 are particularly sensitive to low light conditions. 
But-fuco is often described a light-harvesting role 
(Van Leeuwe et al., 2014). As we know, pigment 
composition of  P .  antarctica  varied with light and 
iron conditions (Seoane et al., 2009; Van Leeuwe et 
al., 2014). Here the increased Fuco were confi rmed 
at low light (Fig.4f). Under the high light,  P .  globosa  
cells responded by reducing their content of light 
harvesting pigments, i.e., Chl  c 2, Chl  c 3, Fuco 
(Fig.4d, e, f) and by increasing the presence of photo-
protective xanthophylls diadinoxanthin (Fig.4c). The 
results of PCA on hemolytic activity and pigments 
(Fig.5) suggested that the production of hemolytic 
compounds might associate with the light-harvesting 
pigments.  

 However, the inhibitors limited the PSII activity 
of  P .  globosa , but no eff ect on hemolytic activity. 
DBMIB can block the PSII to PSI by the cytochrome 
b 6 f complex in activation of the kinase (Mao et al., 
2002; Roberts et al., 2004; Trebst, 2007). Atrazine 
may cause the controversial response to diff erent 
organisms (Brain et al., 2012). Trace amount of 
DBMIB resulted to signifi cant inhibition of PSII 
photochemistry (Belatik et al., 2013); however, no 
response of hemolytic activity may indicate not the 
electron transfer chains in PSII, but other biosynthetic 
pathway of hemolytic activity may involve in 
 P .  globosa .   

 Stress, such as low temperature, high light, 
iron deplete, dark, and electron inhibitors, showed 
signifi cant impact on the growth and photosynthetic 
activity of  P .  globosa , while, the external stresses do 
not correspond to the hemolytic activity of  P .  globosa . 
The heathier  P .  globose  is, the higher hemolytic 
activity is. Stress could not be the driver of hemolytic 
activity of  P .  globosa .  

 5 CONCLUSION 
 The current study focuses on regulation of external 

stressors, such as light, temperature, iron, and 
photosynthetic electron inhibitors, on photosynthetic 
system of  P .  globosa  and their hemolytic activity. 
Light was essential for  P .  globosa  to produce 
hemolytic toxins. However, high light intensity (i.e., 
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>100 μmol/(m 2 ·s)) inhibited the hemolytic activity, 
together with the lower temperature (16 °C) and iron-
limited stress. Meanwhile, photosynthetic activity 
( F  v / F  m , Yield, and ETR) and hemolytic activity of 
 P .  globosa  were positively correlated. However, the 
hemolytic activity of  P .  globosa  was not aff ected by 
photosynthetic electron inhibitors, which blocked the 
photosynthetic activity signifi cantly. Therefore, it 
could be concluded that hemolytic toxin production 
of  P .  globosa  were associated with photosynthetic 
process but not with the electron transfer chain. 
The present study provides important information 
for understanding the formation mechanisms of 
hemolytic compounds of  P .  globosa .  

 6 DATA AVAILABILITY STATEMENT 

All data generated and/or analyzed during this 
study are contained within this article.
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