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  Abstract         Raphidiopsis   raciborskii  is a notorious bloom-forming and fi lamentous cyanobacterium 
that has been extensively investigated into its toxicity, phylogeny, and spreading potential. Studies have 
demonstrated that this species has spanned diff erent climates from tropical zones to temperate regions, 
suggesting that  R .  raciborskii  is becoming a cosmopolitan species in freshwater systems around the 
world. In fact, it has been proposed that several characteristics of  R .  raciborskii  may explain its spread 
and dominance. In particular,  R .  raciborskii  is known to display a high extent of physiological plasticity 
regarding nutrients, light regimes, and temperatures. Moreover, this species illustrates diff erent ecotypes with 
distinct environmental requirements. Here, we present an overview of  R .  raciborskii ’s global distribution 
and adaptation strategy based on the recent fi ndings from genome variance,   toxicity, and ecophysiology. 
The expansion of its geographical distribution can be linked to its genome, toxicity, and ecophysiology. 
The variable genes are mainly associated with the stress response, phage defense, DNA repair, cell cycle 
control, and membrane transport, illustrating the species’ adaptability in response to changing environments. 
In fact, the species shows rapid adaptability to low and/or variable nutrient availability, especially changing 
phosphorus availability. Moreover, the variabilities of strains within the population extend their fl exibility 
to adapt and acclimate to ambient environment. In addition, cylindrospermopsins (CYN) appear to have a 
potential biological role in facilitating theirs dominance or bloom. These strategies of  R .  raciborskii  make it 
a challenge to manage in a freshwater system, refl ecting the management of its bloom from further evidence 
of the complex ecophysiology, toxicity, and genome of this species. 

  Keyword : distribution; ecophysiology; genome variance;  Raphidiopsis   raciborskii ; toxicity 

 1 INTRODUCTION 

  Raphidiopsis   raciborskii  (basonym 
 Cylindrospermopsis   raciborskii ; Aguilera et al., 
2018) is a solitary, planktonic, and fi lamentous 
diazotrophic cyanobacterium belonging to the order 
Nostocales. Because it has two terminal heterocysts, 
 R .  raciborskii  was originally described as  Anabaena  
 raciborskii  Wołoszyńska from the samples collected 
in Java, Indonesia, in 1912 (Wołoszyńska, 1912). 
Original observations were limited to the Indo-
Malayan realm, so  R .  raciborskii  was considered to be 
a tropical species. However, an increasing number of 
reports have been made from every continent except 

Antarctica (Padisák, 1997; Sinha et al., 2012) that 
 R .  raciborskii  forms bloom in approximately 18% of 
freshwater lakes, reservoirs, and rivers (Xiao et al., 
2020a). These results make it reasonable to assume 
that  R .  raciborskii  is an invasive species (Padisák, 
1997; Briand et al., 2004; Antunes et al., 2015). 

 Apart from its dispersal potential,  R .  raciborskii  
has attracted scientifi c interest due to its association 
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with toxic eff ects. The cyanotoxin alkaloid 
cylindrospermopsin (CYN) was fi rst identifi ed by 
Ohtani et al. (1992) isolated from  R .  raciborskii , 
after which more CYN variants were found (Li et al., 
2001; Rzymski and Poniedziałek, 2014; Wimmer et 
al., 2014). Recently, some strains of  R .  raciborskii  
have also been found that can produce other toxins, 
including alkaloid saxitoxin (STX; Lagos et al., 
1999; Zingone and Enevoldsen, 2000; Neilan et al., 
2003; Miotto et al., 2017) and lipophilic congeners 
of phorbol 12-myristate 13-acetate (PMA; Rzymski 
et al., 2017).  

 Several studies have highlighted the distinctive 
features of this species that aid its succession and 
dominance. For example, laboratory studies have 
observed that  R .  raciborskii  can utilize all kinds 
of diff erent nitrogen sources (Harris and Baxter, 
1996; Moisander et al., 2012; Ammar et al., 2014) 
and a high uptake affi  nity and storage capacity for 
phosphorus (Isvánovics et al., 2000; Posselt et al., 
2009; Wu et al., 2009; Xiao et al., 2020a), as well as 
can thrive in a wide range of light intensities (Padisák 
and Istvánovics, 1997; Padisák and Reynolds, 1998; 
Briand et al., 2002; Pierangelini et al., 2014). Therefore, 
information on the ecology, phylogeography, and 
toxicology of this species has been reviewed (Padisák 
and Istvánovics, 1997; Griffi  ths and Saker, 2003; 
Antunes et al., 2015; Burford et al., 2016, 2018). 
However, as interest in  R .  raciborskii  has increased, 

some issues regarding its phylogeography, molecular 
selection, and ecophysiological adaptation have 
been questioned. Here, the latest proposals on its 
distribution and adaptation through the integration of 
genomics, toxicity, and ecophysiology are discussed. 
As well, managing implications for  R .  raciborskii  
are also presented according to new insights into the 
success of this species in diff erent environments. 

 2 DISTRIBUTION 
  Raphidiopsis   raciborskii  was fi rst identifi ed by 

Wołoszyńska (1912) in 1899–1900 from samples 
taken from the lakes in Java, Indonesia. In Europe, 
 R .  raciborskii  was fi rst observed in Lake Kastoria, 
Greece (Skuja, 1937), and later in Hungary (Padisák, 
1997). In Africa,  R .  raciborskii  was recorded in 
detail in Lake Victoria by Komá rek and Kling (1991) 
and was probably fi rst detected in 1938 by Huber-
Pestalozzi (1938). Additionally, this species was fi rst 
reported in America in 1955 (Prescott and Andrews, 
1955), in Australia in 1979 (Hawkins et al., 1985), and 
in the Middle East in 1998 (Zohary, 2004). To date, 
an increasing number of observations have localized 
this species in rivers, lakes, reservoirs, and shallow 
waters in the northern and southern hemispheres 
(Fig.1). This species has been found, for example, in 
Spain (Romo and Miracle, 1994), Thailand (Li et al., 
2001), New Zealand (Stirling and Quilliam, 2001), 
Germany (Fastner et al., 2003), Japan (Chonudomkul 
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 Fig.1 The global geographic distribution of  Raphidiopsis     raciborski  
 Data are obtained from Padisák, 1997; Sinha et al., 2012; Antunes et al., 2015; Panou et al., 2018; Sidelev et al., 2020; Yang et al., 2021. Map review No. 
GS(2016)2958.  The blue triangles stand for the countries and regions where R. raciborskii was observed. 
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et al., 2004; Zarenezhad et al., 2012), Brazil (Soto-
Liebe et al., 2010; Stucken et al., 2010), Poland 
(Kokociński et al., 2010), Italy (Messineo et al., 
2010), Russia (Vinogradska, 1974; Babanazarova et 
al., 2015; Sidelev et al., 2020), Vietnam (Dao et al., 
2010; Nguyen et al., 2017), USA (Yilmaz and Phlips, 
2011), and Myanmar (Ballot et al., 2020; Swe et al., 
2021). In China,  R .  raciborskii  was fi rst reported in 
a fi sh pond in Kunming, Yunnan, in 2006 (Wu et al., 
2011); thereafter, this species was found to be present 
in freshwater bodies in Guangdong (Lei et al., 2014; 
Yu et al., 2014), Hubei (Wu et al., 2011, Jiang et al., 
2014), Shanghai (Wu et al., 2011), Guizhou (Chen 
et al., 2011), Jiangsu (Wu et al., 2012a), Taiwan 
(Yamamoto and Shiah, 2012), Fujian (Lv et al., 2013; 
Jiang et al., 2014; Tan et al., 2021), Beijing (Xie et al., 
2018), Sichuang (Tao et al., 2016), Shangdong (Wang, 
2019), Chongqing (Zhang, 2019), and Zhejiang (Chao 
et al., 2021). 

 2.1 Phylogeography and dispersal route 

 Several hypotheses have been proposed to explain 
the origin and dispersal routes of  R .  raciborskii  from 
tropical/subtropical zones to northern latitudes. 
The “radiation center” hypothesis was proposed by 
Padisák (1997) only based on the high diversity and 
salinity tolerance characteristics of  R .  raciborskii . 
Padisák and Istvánovics (1997) suggested that two 
radiation centers, Africa as the primary center and 
Australia as the secondary center, were responsible for 
expansion in Central America and Asia, respectively. 
Two possible routes, such as an oceanic route to 
the America by migratory birds or by unintentional 
human activities and a continental route to Central 
Asia and then to European by river course or by birds, 
are thought to explain the expansion of  R .  raciborskii  
from Australia to temperate regions (Padisák and 
Istvánovics, 1997; Moreira et al., 2011). 

 Another “refuge” hypothesis for the current 
geographic distribution was proff ered by Gugger et 
al. (2005) based on a phylogeographic study. They 
found that three clusters of  R .  raciborskii  strains were 
grouped: (ⅰ) America, (ⅱ) Europe, and (ⅲ) Africa and 
Australia using the 16S–23S internally transcribed 
spacer (ITS1) sequences. Therefore, they suggested 
that recent spread of  R .  raciborskii  across the 
Americas and Europe occurred from restricted warm 
refuge areas rather than through intercontinental 
exchanges. Wood et al. (2014) indicated that cryptic 
akinetes of  R .  raciborskii  were already present in 
lake sediment layers in New Zealand long before 

they were discovered as phytoplankton in 2003. A 
similar fi nding was found in the Blanca subtropical 
lagoon (De La Escalera et al., 2014). However, the 
refuge hypothesis has been repeatedly challenged as 
signifi cant genetic diff erences were found in strains of 
 R .  raciborskii  from southern Europe (Spain, Greece, 
and Italy) and northern Europe (Germany, Hungary, 
and Russia) (Cirés et al., 2014; Panou et al., 2018; 
Sidelev et al., 2020).  

 Later, a new hypothesis was raised by Haande 
et al. (2008) and Moreira et al. (2015) through the 
phylogeographic analysis of strains from all fi ve 
continents based on three genetic markers, 16S rRNA 
gene, 16S–23S rRNA larger fragment (ITS-L), and 
RNA polymerase ( rpoC1 ). They postulated that the 
primary evolutionary center of  R .  raciborskii  was 
the tropical area of America, from where this species 
spread to the African continent, followed by Australia, 
Asia, and Europe. The hypothesis was supported by 
recent studies which indicated that strains from Spain, 
Greece, Italy, Tunisia, Russia, and New Zealand are 
more genetically similar to strains from the Americas 
(Cirés et al., 2014; Wood et al., 2014; Panou et al., 
2018).  

 Although various hypotheses have been raised to 
explain the spread of  R .  raciborskii , there is a lack 
of high-quality paleontological evidence to support 
each hypothesis (Padisák et al., 2016; Kokociński et 
al., 2017). Sidelev et al. (2020) suggested that close 
genetic relatedness between the southern European, 
Tunisian, and American strains, as well as between 
the African and Australian strains, may be the result 
of the ancient origin of the species inhabiting the 
continents, rather than new transport in some cases 
through birds, insects, humans, or rivers in some cases. 
Recently, however, Vico et al. (2020) showed Central 
Africa as the primary center of distribution based 
on the analysis of 354 orthologous genes from all 
available genomes and ITS sequences. A nested clade 
analysis (NCA; Posada et al., 2006) was performed to 
test the phylogeography of 96 strains of  R .  raciborskii  
from diff erent continents in our laboratory (Fig.2). 
Our results revealed that these strains isolated from 
Uganda, Senegal, and Australia formed a tight cluster, 
confi rming the result of Padisák and Istvánovics (1997) 
and Vico et al. (2020). It suggests that  R .  raciborskii  
can spread from the tropical zone to temperate and 
northern regions (Padisák and Istvánovics, 1997). 
However, closer relationships between some Chinese 
strains and other strains (e.g. European and American 
strains) were also noted in our results. It suggests that 
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the biogeography of  R .  raciborskii  has become even 
more confused with the increasing studies of more 
strains being isolated from around the world. 

 2.2 Toxicity and dispersal route 

 The cyanotoxin cylindrospermopsin (CYN) fi rst 
became known in scientifi c documents as the “Palm 
Island Mystery Disease,” which occurred in 1979 
on Palm Island, Australia. One hundred forty-eight 
persons were hospitalized with severe symptoms 
of anorexia, vomiting, and tender livers after 
consumption of cyanobacterial bloom water treated 
with copper sulfate (Byth, 1980; Ohtani et al., 
1992). Another implication of  R .  raciborskii  in the 
poisoning was in northern Queensland, Australia, 
13 cattle died in 1992 after drinking from a water 
source with a heavy cyanobacterial bloom (Thomas 
et al., 1998).  

 A novel structure for CYN was proposed by 
Ohtani et al. (1992). To date, four diff erent CYN 
variants, 7-epicylindrospermopsin (7-epi-CYN), 
7-deoxy-cylindrospermopsin (7-deoxy-CYN), 

7-deoxy-desulfo-cylindrospermopsin, and 7-deoxy-
desulfo-12-acetyl-cylindrospermopsin, have been 
described (Norris et al., 1999; Banker et al., 2000; 
Rzymski and Poniedziałek, 2014; Wimmer et al., 
2014). Their novel structures, chemical properties, 
and toxicological eff ects and occurrences have been 
extensively reviewed (see reviews by De La Cruz et 
al., 2013; Burford et al., 2016; Adamski et al., 2020; 
Yang et al., 2021). Moreover,  R .  raciborskii  can 
also produce neurotoxic STX and its analogs (i.e., 
neo-STX, gonyautoxins 2 and 3 [GTX-2 and GTX-
3], decarbamoyl STX [dc-STX], and decarbamoyl-
neo-saxitoxin [dc-neo-STX]), collectively known as 
paralytic shellfi sh toxins (PST) (Lagos et al., 1999; 
Li et al., 2001; Griffi  ths and Saker, 2003; Molica et 
al., 2005; Soto-Liebe et al., 2010). A 43-kb  cyr  gene 
cluster (Stucken et al., 2014) and a 35-kb  stx  gene 
cluster (Kellmann et al., 2008) were responsible 
for the production of CYN and STX, respectively. 
Recently, another toxic compound, polymethoxy-
1-alkene (PMA) was reported from strains isolated 
from North America (Rzymski et al., 2017). 
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 Fig.2 A nested clade analysis (NCA) of  nif  gene for 96 strains of  R .    raciborskii  isolated from diff erent continents 
 Some genes data are from NCBI: https://www.ncbi.nlm.nih.gov. 
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 Most studies on the dispersal route of  R .  raciborskii  
are based on molecular genetic markers (i.e., 16S 
rRNA, ITS, PC-IGS,  nifH , and  rpoC1 ), and did 
not consider the phenotypes and genotypes of their 
toxicity (Vico et al., 2020). Studies have shown that 
 R .  raciborskii ’s ability to produce toxins appears 
to show a geographic pattern. For example, CYNs 
isolated from Australia, New Zealand, and Asia can 
be produced (Hawkins et al., 1997; Saker et al., 2003; 
Wood and Stirling, 2003; Chonudomkul et al., 2004; 
Jiang et al., 2014; Lu et al., 2021), while the South 
American strains are associated with STX producers 
(Lagos et al., 1999; Antunes et al., 2015). In contrast, 
strains from Africa, Europe, and North America are 
neither PST nor CYN- producers (Fastner et al., 2003; 
Neilan et al., 2003; Kellmann et al., 2006; Yılmaz 
et al., 2008; Mowe et al., 2015). Vico et al. (2020) 
found that the strains analyzed were divided into two 
clades, one with the South American strains (mostly 
PSP-producers) and another with the non-toxic 
strains isolated from Europe and Sun-Saharan Africa 
and CYN-producers isolated from Oceania. A similar 
result was also reported by Jiang et al. (2020), who 
indicated that Clade IV included all PST-producing 
strains, while CYN-producing strains were divided 
into two clusters, Clade II and Clade V.  

 Nevertheless, partial sequences of  cyr  genes are 
determined in American non-CYN producing strains 
(Piccini et al., 2011) and in PST-producing strains 
from Brazil (Hoff -Risseti et al., 2013). Recently, 
Vico et al. (2020) found that the partial genes of 
 cyrA ,  cyrB , and  cyrC  are present again in the strains 
isolated from South America. Meanwhile, Yilmaz 
and Phlips (2011) found that  cyr  genes exhibit more 
exchange changes within North American strains of 
CYN-producing  Aphanizomenon  ( Chrysosporum ) 
 ovalisporum  than between species. A hypothesis 
raised by Vico et al. (2020), is therefore that (i) 
non-toxic  R .  raciborskii  spread early from tropical 
Africa as the primary evolutionary center to North 
Africa, North America, and Mediterranean Europe; 
(ii) a secondary evolutionary event was involved to 
acquire the cluster for CYN synthesis. These CYN-
producing species spread warm climates across 
sub-Saharan Africa, Oceania, and South America. 
Later, the populations in South America somehow 
lost the  cyr  cluster and acquired the  stx  cluster 
through horizontal gene transfer, then the STX-
producing species migrated to North America. In 
fact, the secondary evolutionary event mentioned by 
Vico et al. (2020) was the result of a phylogenetic 

analysis based on the ribosomal ITS of the species. 
Moreover, the estimated divergence time calculated 
for  Raphidioposis  may coincide with the time when 
Gondwana was split into Oceania and the South 
American continent. However, strains isolated from 
North America, Europe, Africa, and the Middle East 
have not been reported to produce CYN (Neilan et 
al., 2003; Yılmaz et al., 2008; Alster et al., 2010), 
which does not support this secondary evolutionary 
evidence that African strains are a source of the CYN 
gene cluster.  

 Recently, Jiang et al. (2020) found that strains of 
 R .  raciborskii  isolated from China (i.e., CHAB3409, 
CHAB3422, and CHAB3426) produce STX, neo-
STX, and dc-STX, and these strains and American 
strains have been clustered into diff erent clades, 
further supporting the recent intercontinental spread 
events of toxic  R .  raciborskii  (Antunes et al., 2015), 
but not the geographic origin of the strains. In fact, 
other cyanobacterial genera, including  Chrysosporum , 
 Aphanizomenon ,  Anabaena ,  Umezakia ,  Microseira , 
and  Oscillatoria , have been reported to produce CYN 
(Rzymski and Poniedziałek, 2014). Hence, a complex 
history of acquisition and loss in the  cyr  gene 
cluster may be associated with its intra- and inter-
genomic transfers (Jiang et al., 2014, 2020; Burford 
et al., 2016). Similarly, Moustafa et al. (2009) also 
suggested that STX is a common ancestral trait of 
 R .  raciborskii  strains. Therefore, to answer these 
questions, additional genomic data from these diverse 
lineages, including closely related toxic and non-toxic 
strains, are needed.  

 Based on the literature and our NCA analysis 
(Fig.2), we partially agree with Padisák’s early 
hypothesis of the tropical region as the evolutionary 
center of  R .  raciborskii , but do not support the fi nding 
of Africa and Australia as the primary and secondary 
centers, and the high genetic and toxic diversity of 
Chinese strains indicates a high heterogeneity of the 
 R .  raciborskii  population (Cirés et al., 2014; Moreira 
et al., 2015; Panou et al., 2018). Willis et al. (2018) 
also suggested that  R .  raciborskii  exhibits high 
plasticity due to frequent gain or loss of genes. These 
refl ect that the ability of  R .  raciborskii  to produce 
toxins may not be a geographical pattern but the 
result of environmental responses and adaptations 
(Willis et al., 2019; Jiang et al., 2020). Therefore, 
a larger number of strains with diff erent toxicity are 
required to test the comprehensive biogeography of 
this species, as previously suggested (Cirés et al., 
2014). 
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 3 ADAPTATION AND ACCLIMATION  

 3.1 Genome variations and adaptation 

 Based on ecological and genomic studies, new 
insights into the genomic adaptation of marine 
picocyanobacteria to the local environment have 
been provided (Kashtan et al., 2014; Larsson et al., 
2014; Biller et al., 2015). However, due to the lack of 
balanced genomic samples, the genomic adaptation 
of cyanobacteria to a wide variety of environments 
is still poorly understood (Chen et al., 2021). The 
fi rst  R .  raciborskii  genome was sequenced from 
the toxigenic strain CS-505 (Stucken et al., 2010), 
followed shortly thereafter by those of CS-506 and 
CS-509 (Sinha et al., 2014). To our knowledge, only 
one  R .  raciborskii  genome has been closed as late as 
2021. However, several draft genomes isolated from 
diff erent locations were subsequently sequenced. To 
date, 23 drafts and 1 closed genomes sequenced from 

isolated strains from Australia, Brazil, United States, 
Uruguay, China, and Korea were available from 
NCBI (see Table 1 for detailed information). The 
average nucleotide identity (ANI) between strains 
was 0.997 6 (range 0.995 0–0.998 7, between genome 
pairs; Willis and Woodhouse, 2020).  

 Compared to other cyanobacteria (e.g.,  Microcystis , 
 Nostoc ,  Dolichospermum , and  Aphanizomenon ), 
a smaller genome was found in  R .  raciborskii  with 
a genome size of 3.74±0.24 Mb, 40.24%±0.15% 
G+C content, and 3 144±292.35 coding sequences 
(Table 1). Stucken et al. (2010) has suggested that a 
small genome found in  R .  raciborskii  may be in the 
process of reducing superfl uous functions. Typically, 
a downsizing of a genome is seen as an indication 
of an evolutionary adaptation strategy to diff erent 
environments (Rocap et al., 2003; Shi and Falkowski, 
2008; Larsson et al., 2011; Willis et al., 2018). It 
suggests that genome variants in  R .  raciborskii  are 

 Table 1 Genome assembly and toxins statistics in  R .    raciborskii  strains  

 Strain  GenBank assembly  
 or accession No.  Size (Mb)  GC (%)  Coding 

sequence CDS  Origin   Toxicology (reference) 

 N8  GCA_018139025.1  3.9  40.1  3 261  China  Non-toxin (Chen and Lei, unpublished) 

 Cr2010  GCA_003367075.1  3.6  40.2  3 023  USA  – (Martin et al., unpublished) 

 CS-505  GCA_001676585.1  4.2  40.3  3 537  Australia  Cylindrospermopsin (Stucken et al., 2010) 

 GIHE 2018  GCA_006523545.1  3.6  40.2  3 073  Korea  Non-toxin (Jeong et al., 2020) 

 CENA302  GCA_002027345.1  3.5  40.1  3 037  Brazil  Saxitoxin (Abreu et al., 2018) 

 MVCC14  GCA_001858125.1  3.6  40.1  3 130  Uruguay  Saxitoxin (Vico et al., 2020) 

 CENA303  GCA_002114155.1  3.4  40.3  2 987  Brazil  Saxitoxin (Abreu et al., 2018) 

 MVCC19  GCA_012583295.1  3.5  40.1  3 022  Uruguay  Saxitoxin (Vico et al., 2020) 

 ITEP-A1  GCA_001586755.1  3.6  40.1  3 185  Brazil  Saxitoxin and Cylindrospermopsin (Lorenzi et al., 2016) 

 S01  GCA_002893285.1  3.8  40.3  3 343  Australia  Cylindrospermopsin (Willis et al., 2018) 

 S06  GCA_002893245.1  3.9  40.3  3 415  Australia  Cylindrospermopsin (Willis et al., 2018) 

 C04  GCA_002893145.1  4.0  40.3  3 437  Australia  Cylindrospermopsin (Willis et al., 2018) 

 C03  GCA_002893155.1  4.0  40.3  3 466  Australia  Cylindrospermopsin (Willis et al., 2018) 

 S05  GCA_002893265.1  3.9  40.3  3 387  Australia  Cylindrospermopsin (Willis et al., 2018) 

 C07  GCA_002893125.1  4.0  40.3  3 465  Australia  Cylindrospermopsin (Willis et al., 2018) 

 CS-508  GCA_001858115.1  3.6  40.2  3 052  Australia  Non-toxin, (Fuentes-Valdés et al., 2018) 

 S07  GCA_002893205.1  3.9  40.3  3 398  Australia  Cylindrospermopsin (Willis et al., 2018) 

 CYRF  GCA_002321945.1  4.2  40.2  2 791  Brazil  – (Hoff mann et al., unpublished) 

 S10  GCA_002893215.1  3.9  40.3  3 405  Australia  Cylindrospermopsin (Willis et al., 2018) 

 S14  GCA_002893185.1  3.9  40.3  3 427  Australia  Cylindrospermopsin (Willis et al., 2018) 

 CS-506_A  GCA_013867415.1  3.8  40.5  2 637  Australia  Cylindrospermopsin (Sinha et al., 2014) 

 KL1  GCA_015708265.1  3.7  40  3 115  USA  – (Martin et al., unpublished) 

 CYLP  GCA_002321935.1  4.0  40  0  Brazil  – (Hoff mann et al., unpublished) 

 LB2897  GCA_012583345.1  2.7  39.9  1 702  Uruguay  Saxitoxin (Vico et al., 2020) 

 –: unknown. Genomic data from NCBI: https://www.ncbi.nlm.nih.gov/. 
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responsible for the global expansion into new habitats. 
 Willis et al. (2018) stated that the  R .  raciborskii  

pan-genome contains about 16% of  R .  raciborskii  
genome with 847 variables and 433 strain-specifi c 
orthologous groups, suggesting that there is greater 
genetic diversity in  R .  raciborskii  strains. In addition, 
variation, arrangement, or shifting of genes are 
always found in  R .  raciborskii  when seven strains 
of  R .  raciborskii  are compared with the strain 
 Raphidiopsis   brookii  D9 strain. These genes are 
involved in natural product biosynthesis, heterocyst 
glycolipid formation, nitrogen fi xation, and toxin 
production. Similar results are reported by Abreu 
et al. (2018), who found variable genes involved in 
amino sugar metabolism, DNA modifi cation, and 
carbohydrate biosynthesis. Shi and Falkowski (2008) 
suggested that selective pressures and evolution can 
aff ect the core and variable genes, resulting in strain 
variability in diff erent environments (Kashtan et al., 
2014).  

 A comparative genome analysis showed that 
strains of  R .  raciborskii  contained a variety of 
strain-specifi c (or non-homologous) genes (Stucken 
et al., 2010; Sinha et al., 2014; Abreu et al., 2018). 
These genes are involved in energy production and 
conversion, stress response and phage defense, DNA 
repair and recombination, cell cycle control, and the 
nutrients transport and uptake (Fig.3), all of which 
are largely related to environmental response and 
adaptation. Moreover, the gene clusters associated 
with toxin production and heterocyst diff erentiation 
(i.e., hassallidin [ hass ], cylindrospermopsin [ cyr ], 
saxitoxin [ sxt ], heterocyte glycolipid [ hgl ], and 
nitrogen fi xation [ nif ,  fdxN ,  hesA  and  B , and  feoaA ]) 
also indicate phenotypic plasticity (Sinha et al., 
2014; Abreu et al., 2018). Stucken et al. (2010) 
suggested that the absence or loss of the  cyr  cluster, 
rather than indicating mutations or partial deletions, 

was associated with the absence of toxicity in some 
strains of  R .  raciborskii . However, several reports 
have found that some  R .  raciborskii  strains retained 
the partial  cyr  cluster, i.e.,  cyrA ,  cyrB , or/and  cyrC  
are still unable to produce CYN (Kellmann et al., 
2006; Rasmussen et al., 2008; Hoff -Risseti et al., 
2013). This supports that horizontal gene transfer 
or subsequent loss of the  cyr  gene is responsible for 
the acquisition of the  cyr  genes (Christiansen et al., 
2008; Moustafa et al., 2009). Willis et al. (2018) has 
observed that 21 proteins, particularly those involved 
in sugar transport, phosphonate substrate binding, and 
CRISPR/Cas phage-defense systems, yield a greater 
copy number in the coiled compared to the straight 
morphotypes of  R .  raciborskii . Larsson et al. (2011) 
proposed that gene duplication can expand phenotype 
and adaptive behavior in cyanobacteria. 

 In short, comparative genomics provides new 
insights into the genotypic and phenotypic plasticity 
of the species  R .  raciborskii . A high proportion 
of variable strain-specifi c genes associated with 
environmental responses and adaptation, particularly 
in some key cellular processes (e.g., cell regulation, 
biosynthesis, and transport), are found in this species, 
refl ecting that successful adaptation to specifi c habitat 
in  R .  raciborskii  may allow the exploration of a wide 
range of environmental conditions. Furthermore, the 
co-existence of multiple strains within a  R .  raciborskii  
population in a single water sample can confer fi tness 
advantages to this species in variable environments 
by eliciting their niche adaptation (Piccini et al., 
2011; Willis et al., 2018). In addition, Abreu et al. 
(2018) found that the comparative genome analysis 
showed that the fi ve South American genomes 
CENA302, CENA303, ITEP-A1, MVCC14, and D9 
(Brazil and Uruguay) are slightly smaller and more 
conserved than the non-South American CS-505, CS-
508, and CR12 (Australia and Singapore) genomes, 
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suggesting that genomes from South America 
underwent gene loss events. However, due to the 
lack of genome sequences in European and African 
strains, no more precise conclusions can be drawn 
about the infl uence of the geographic environment on 
their genomic plasticity. Therefore, in order to explain 
the very diff erent strategies for genomic organization 
and adaptation mechanisms in  R .  raciborskii , more 
strains from a range of habitats or regions needed to 
be sequenced and compared in the future.  

 3.2 Ecophysiology and adaptation 

 3.2.1 Phosphorus 

 Phosphorus is considered a key factor in the 
ecophysiology and dominance of  R .  raciborskii . A 
positive or negative correlation between  R .  raciborskii  
cell densities and phosphorus concentrations has been 
reported in fi eld studies (Bonilla et al., 2012; Muhid 
et al., 2013; Soares et al., 2013a; Zhao et al., 2017). 
Several studies have illustrated that  R .  raciborskii  
has a high uptake affi  nity for dissolved inorganic 
phosphorus (Isvánovics et al., 2000; Wu et al., 2009) 
and a high phosphorus storage capacity (Posselt et 
al., 2009; Willis et al., 2017), as well as a superior 

scavenger for dissolved organic phosphorus (Bai et 
al., 2014). Furthermore, both uptake and conversion 
of phosphorus were more eff ective in  R .  raciborskii  
than in  Microcystis   aeruginosa  and  Aphanizomenon  
 fl os - aquae  (Wu et al., 2009). Therefore, these traits 
are favorable for the dominance of  R .  raciborskii  
populations (Isvánovics et al., 2000), which is 
supported by the results of Chislock et al. (2014), who 
indicated that  R .  raciborskii  can dominate at diff erent 
phosphorus concentrations. 

 Physiological and molecular studies have 
suggested that  R .  raciborskii  can evolve a variety 
strategies in response to environmental phosphorus 
(Fig.4a). Under phosphorus defi cient conditions, 
strains show little metabolic activity to keep 
sustain themselves (i.e., “S-adapted strains”). In 
this environment, the growth and photosynthesis of 
these strains are signifi cantly inhibited and the genes 
encoding photosynthesis and protein synthesis are 
markedly downregulated, while alkaline phosphatase 
and the genes encoding phosphate uptake and 
transport, ATP-consumption, and energy metabolism 
are markedly upregulated (Wu et al., 2012a; Bai et 
al., 2014; Willis et al., 2018; Shi et al., 2022). Under 
organic phosphate conditions, the strains showed a 
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rapid growth (i.e., “C-adapted strains or K-adapted 
strains”). In this state, rapid growth is noted, which 
is caused by a signifi cant increase in genes encoding 
phosphate-specifi c transporters, alkaline phosphatase, 
and ribosomes (Bai et al., 2014; Willis et al., 2018; Shi 
et al., 2022). However, under phosphonate conditions 
(i.e., “R-adapted strains or r-adapted strains”), a 
slight inhibition of growth and photosynthesis is 
observed because alkaline phosphatase and the 
genes encoding carbon-phosphorus lyase, genetic 
information, and environmental information are 
dramatically upregulated (Willis et al., 2018; Shi et 
al., 2022). Additionally, since  R .  raciborskii  has a 
high phosphorus storage capacity, pulsed additions of 
dissolved inorganic phosphorus are more favorable 
for the growth of this species compared to constant 
feeds of dissolved inorganic phosphorus (Posselt et 
al., 2009; Marinho et al., 2013; Amaral et al., 2014), 
referred to as “C-adapted strains or K-adapted strains” 
(Xiao et al., 2020a).  

 Recent studies have provided evidence that 
diff erent strains in a  R .  raciborskii  population 
exhibit signifi cant diff erences in growth, storage, and 
molecular response to phosphorus concentrations 
and pulses (Fig.4b, Amaral et al., 2014; Willis et al., 
2015, 2017, 2019; Guedes et al., 2019; Xiao et al., 
2020a). For example, Xiao et al. (2020a) showed that 
phosphorus storage capacity can vary four-fold in six 
toxic strains of  R .  raciborskii . Willis et al. (2019) have 
also pointed out that gene copy number and expression 
patterns for phosphorus metabolism show diff erences 
between the coiled and straight  R .  raciborskii  strains 
under phosphorus replete and defi ciency conditions. 
This fi nding suggests that the intraspecifi c variability 
of  R .  raciborskii  can lead to changes in the proportion 
of strains within a population (Burford et al., 2018). 
In addition, it has been suggested that  R .  raciborskii  
dominance can be promoted under both high and low 
nitrogen-to-phosphorus ratios (Posselt et al., 2009; 
Chislock et al., 2014). 

 Moreover, previous studies have confi rmed that P 
availability can aff ect intracellular CYN concentration 
(Q CYNS ) or a shift in the proportion of toxic and non-
toxic  R .  raciborskii . For example, Mohamed and Al-
Shehri (2013) found that Q CYNS  of  R .  raciborskii  cells 
was increased when P concentrations were higher in 
a Saudi lake. Burford et al. (2014) also indicated that 
the proportion of toxic  R .  raciborskii  strains increases 
with increasing phosphorus availability, regardless 
of whether N was supplied using a mesocosm study. 
Lu et al. (2021) showed that phosphorus defi ciency 

stimulates  R .  raciborskii  dominance by facilitating 
CYN-induced alkaline phosphatase secretion. A 
similar fi nding was reported by Bar-Yosef et al. (2010) 
in CYN-producing cyanobacteria,  Chrysosporum  
 ovalisporum . The results may indicate that CYN 
may be facilitated by the dominance of  R .  raciborskii  
under P defi ciency. 

 3.2.2 Nitrogen  

  Raphidiopsis  ( Cylindrospermopsis )  raciborskii  
was originally described as a Nostocales species with 
heterocytes, distinguished from other  Raphidiopsis  
by its lack of heterocytes and nitrogen-fi xing ability 
(Padisák, 1997). However, Abreu et al. (2018) found 
that the  C .  raciborskii  strain CENA303 isolated 
from Brazil does not diff erentiate heterocytes due 
to the absence of  nif  and  hgl  gene clusters involved 
in nitrogen fi xation and thick heterocyte glycolipid 
envelope formation, respectively. Therefore, 
 Cylindrospermopsis  and  Raphidiopsis  are considered 
to be a unifying genus, with  Raphidiopsis  using 
a morphological, ultrastructural, physiological, 
and molecular approach (Aguilera et al., 2018). In 
general, nitrogen-fi xing ability is often associated 
with an ecological advantage of  R .  raciborskii  over 
non-nitrogen-fi xing species (Harris and Baxter, 1996; 
Hadas et al., 2012). Studies have indicated that the 
terminal heterocyst cells of  R .  raciborskii  can fi x 
nitrogen, allowing this species to survive in low 
dissolved nitrogen environments (Harris and Baxter, 
1996; Présing et al., 1996; Padisák and Istvánovice, 
1997; McGregor and Fabbro, 2000; Spröber et al., 
2003; Plominsky et al., 2013; Willis et al., 2016). 
However, a preference for diff erent forms of dissolved 
nitrogen (i.e., ammonia, nitrate, and urea) has now 
been demonstrated in  R .  raciborskii  (Hawkins et al., 
2001; Saker and Neilan, 2001; Burford et al., 2006; 
Ammar et al., 2014; Figueredo et al., 2014; Yu et al., 
2014). Ammar et al. (2014) showed that  R .  raciborskii  
can grow faster than the species  Planktothix   agardhii , 
a perennial biomass and phytoplankton community 
dominant in a Tunisian reservoir, at high ammonia 
concentrations. Dai et al. (2015) also found that the 
growth of  R .  raciborskii  was signifi cantly inhibited 
under conditions of low nitrogen (<0.5 mg/L).  

 The relationship between CYNs concentrations 
and nitrogen has led to confl icting conclusions. 
For example, Saker and Neilan (2001) found that 
the highest and lowest CYNs concentrations were 
determined in  R .  raciborskii  grown in the absence 
of a fi xed N source and ammonium, respectively. 
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Rigamonti et al. (2018) also indicated that a positive 
association between CYN production and nitrogen 
fi xation was observed in  R .  raciborskii . In contrast, 
Vico et al. (2016) showed that nitrate availability is not 
related to the biosynthesis of saxitoxin and analogs in 
 R .  raciborskii . However, compared to nitrate uptake, 
nitrogen fi xation is an ineffi  cient and energetically 
expensive process (Shafi k et al., 2001; Burford et al., 
2006). Abreu et al. (2018) found that the non-nitrogen-
fi xing strain  R .  raciborskii  CENA303 lacks the 
nitrogen fi xation ( nif ) and heterocyte glycolipid ( hgl ) 
gene clusters. Therefore, nitrogen availability can shift 
the proportion of toxic and non-toxic  R .  raciborskii  
and regulate the formation of  R .  raciborskii  bloom. 
Switching between dissolved nitrogen assimilation 
and nitrogen fi xation in  R .  raciborskii  is an adaptive 
strategy to respond to fl uctuations in environmental 
nitrogen (Moisander et al., 2012). 

 3.2.3 Other factor 

  Raphidiopsis   raciborskii  has shown a wide 
tolerance to diff erent temperatures and light intensities. 
This species can grow at light intensities as low as 
tens to hundreds of μmol photons/(m 2 ·s) (Saker et al., 
1999; Shafi k et al., 2001; Griffi  ths and Saker, 2003; 
Briand et al., 2004; Dyble et al., 2006; Mehnert et 
al., 2010; Yu et al., 2014). Field studies have shown 
that  R .  raciborskii  can form blooms under low light 
intensity, which has advantages for its shade tolerance 
and light acclimatizaion (Padisák, 1997; Padisák and 
Reynolds, 1998; Briand et al., 2002; Mehnert et al., 
2012). Moreover, stratifi ed water column conditions 
are generally considered favorable for  R .  raciborskii , 
although it is typically dispersed throughout the water 
column (Bouvy et al., 1999, 2003; McGregor and 
Fabbro, 2000; Berger et al., 2006). This could be a 
factor contributing to the success of  R .  raciborskii  
(Antunes et al., 2015; Burford et al., 2016).  

  Raphidiopsis   raciborskii  also exhibits a wide 
tolerance to diff erent temperatures (Briand et al., 
2004; Chonudomkul et al., 2004; Everson et al., 2011; 
Bonilla et al., 2012). A model analysis revealed that 
 R .  raciborskii  blooms can occur in the temperature 
range of 25 °C to 32 °C (Recknagel et al., 2014), 
suggesting that increasing temperature favor the 
bloom formation of this species (Soares et al., 
2012). Studies have shown that rising temperatures 
are benefi cial for the spread of  R .  raciborskii , as the 
akinete germination of this species is aff ected by early 
spring warming in temperate habitats (Padisák, 1997; 
Briand et al., 2002; Wiedner et al., 2007; Mehnert et 

al., 2012; Yu et al., 2014). Saker and Neilan (2001) 
observed that temperate strains can produce more 
akinetes than those in tropical strains. These results 
suggest that the interplay between ecophysiology and 
genetic evolution may have an impact on the spread 
of  R .  raciborskii . A recent study also demonstrates 
that temperature and light have a synergistic eff ect on 
the growth rates of  R .  raciborskii  (Kehoe et al., 2015; 
Xiao et al., 2020b). 

 In addition, the ecological performance and 
selection of  R .  raciborskii  can also be infl uenced by 
anthropogenic CO 2  (Wu et al., 2012b; Pierangelini 
et al., 2014), pH (Bonilla et al., 2012; Holland et al., 
2012), salinity (Moisander et al., 2012), allelopathy 
(Figueredo et al., 2007; Leão et al., 2009; Antunes et 
al., 2012; Mello et al., 2012), multiple disturbance 
(Yang et al., 2017), zooplankton (Soares et al., 2010; 
Bednarska et al., 2014), and other biotas (Sukenik et 
al., 2012; Bagatini et al., 2014; Guedes et al., 2019; 
Bai et al., 2020). 

 4 CONCLUSION AND IMPLICATION 
 The abundance of studies from around the world 

has provided our understanding of the biogeography, 
toxicity, genome, and ecophysiology of  R .  raciborskii . 
Considering all the evidence, the biogeography of 
this species is credited with an early spread from a 
tropical zone to temperate regions, while the scenario 
of refuge and secondary radiation centers has yet 
to be confi rmed by exploring further strains from 
all continents or paleontological evidence. CYN-
producing strains have been identifi ed in a limited 
number of country, while a geographic spread of toxic 
strains or a complex history of acquisition and loss in 
the  cyr  or  stx  gene cluster is not excluded from the 
intra- and inter-genomic transfers based on current 
studies. Studies have shown that the production and 
export of CYN in  R .  raciborskii  can be a functional 
strategy for competition with other phytoplankton. 
More direct evidence is still needed to support CYN’s 
potential biological role to facilitate its dominance or 
bloom.  

 It is obvious that this species shows fl exible 
adaptation strategies (“C-adapted, R-adapted, and 
S-adapted”) in nutrient dynamics based on laboratory 
experiments, which are very crucial for their expansion 
behavior. However, fi eld studies always indicate 
negative or positive eff ects of nitrogen or phosphorus 
on this species or its dominance, refl ecting that an 
interaction of nitrogen or phosphorus is likely to be 
underestimated. Moreover, it is clear that genome 
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variation and ecotypes exist between co-occurring 
strains in a water sample. Therefore, supplementary 
reports on interaction eff ects, phenotypic diff erences, 
and population plasticity can be expected in this 
species. Furthermore, the impact of global climate 
change on the physiological resilience or existence of 
distinct ecotypes in this species remains unclear.  

 Overall, there is no doubt that rising temperatures 
can be associated with the spread and proliferation 
of this species. Moreover, fl exible strategy and 
signifi cant intra-population strain variation in nitrogen 
and phosphorus dynamics provide better resilience of 
a population under changing environmental nutrients. 
Therefore, controlling  R .  raciborskii  bloom may not 
be achievable with a simple reduction in nitrogen 
or phosphorus loading, particularly in intermittent 
nutrient pulses and mixed water columns. Future 
eff orts are essential for a comprehensive understanding 
of the ecophysiology of  R .  raciborskii  in diff erent 
scenarios in order to fi nd an effi  cient means of the 
control. 

 5 DATA AVAILABILITY STATEMENT 

 The authors declare that all data supporting the 
fi ndings of this study are available within the article. 
The raw data that support the fi ndings of this study 
are available from the corresponding author upon 
reasonable request. 
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