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  Abstract        Algicidal bacteria have been frequently isolated from algal blooming areas. However, 
knowledge regarding the microbial communities coexisting with microalgae and their potential application 
in preventing harmful algal blooms (HABs) is limited. In this study, we investigated the composition 
of the microbial community coexisting with harmful alga  Karenia   mikimotoi  and its responses to algal 
control via nutrient stimulation or by adding algicidal strain in microcosms. The microorganisms inhabiting 
the  K .  mikimotoi  culture consisted of 24 identifi ed phyla, including dominant Proteobacteria (relative 
abundance 76.24%±7.28%) and Bacteroidetes (22.67%±8.32%). Rhodobacteraceae,  Phaeodactylibacter , 
and  Maritimibacter  predominated during the algal cultivation. Both the added nutrient and fermentation 
broth of algicidal strain  Pseudoalteromonas  QF1 caused a massive death of  K .  mikimotoi  and substantial 
changes in the coexisting microbial community, in which Rhodobacteraceae and  Phaeodactylibacter  
signifi cantly decreased, while  Halomonas  and  Alteromonas  increased. Core operational taxonomic units 
(OTUs) analysis indicated that 13 OTUs belonging to Rhodobacteraceae,  Maritimibacter ,  Marivita , 
 Nisaea ,  Phaeodactylibacter ,  Citreicella ,  Halomonas ,  Alteromonas ,  Marinobacter ,  Muricauda , and 
 Pseudoalteromonas  dominated the changes of the microbial communities observed in the  K .  mikimotoi  
culture with or without treatments. Collectively, this study indicated that microbial community inhabiting 
 K .  mikimotoi  culture includes potential algicidal bacteria, and improves our knowledge about microbial 
community succession during biocontrol of  K .  mikimotoi  via nutrient stimulation or by adding isolated 
algicidal strains. 

  Keyword :  Karenia   mikimotoi ; microbial community; nutrient stimulation; algicidal bacteria; 
 Pseudoalteromonas  

 1 INTRODUCTION 

  Karenia   mikimotoi  is a dinofl agellate species 
known to cause harmful algal blooms (HABs) (Aoki 
et al., 2017). Blooms induced by  K .  mikimotoi  have 
been reported frequently in past decades worldwide, 
such as the coast of China (Sakamoto et al., 2021), 
Imari Bay (Aoki et al., 2017), the east Johor Straits of 
Singapore (Kok and Leong, 2019), the French Atlantic 
Shelf (Sourisseau et al., 2016), the waters off  western 
Ireland (O’Boyle et al., 2016), the north-west 
European continental shelf (Gillibrand et al., 2016), 
the Kachemak Bay Alaska (Vandersea et al., 2020), 
and the Arabian Sea (Kumar et al., 2018). The large-
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scale HABs have adverse impacts on aquatic 
ecosystem, can cause mass mortality of benthic and 
pelagic organisms by the competition of nutrient salt, 
the dramatic reduction of underwater light, and the 
secreted toxic substances. A number of researches 
reported that the type of HABs can cause mortality of 
marine organisms, such as oysters (Mizuno et al., 
2015), zooplankton,  Penaeus   vannamei  and 
 Scophthalmus   maximus  (Li et al., 2017), and rotifers 
(Li et al., 2018). Thus, the control of  K .  mikimotoi  has 
recently attracted more attention. 

 Physical and chemical methods have been 
developed and applied to control HABs (Nagai et al., 
2016; Park et al., 2017). Algaecides, such as copper-
based products and natural clays, had been used to 
control HABs. However, copper-based algaecides 
may cause environmental issues, such as toxicity to 
aquatic organisms (Closson and Paul, 2014), and are 
banned internationally. Due to the low fl occulation 
effi  ciency and high fi eld consumption, it is diffi  cult to 
achieve large-scale application of natural clay. 
Recently, eco-friendly controlling methods, such as 
using ultrasonic technology, modifi ed clays, 
allelochemicals secreted by macroalgae, algaecides 
produced by bacteria, and nutrient competition 
between organisms, are receiving increasing attention. 
Among them, algicidal bacteria have strong applied 
potential in control of HABs because of the 
accessibility and excellent biocompatibility. 

 To date, a large number of algicidal bacteria have 
been isolated from seawater (Zheng et al., 2018), 
reservoirs (Shimizu et al., 2017), lake sediments (Su et 
al., 2016), mangroves (Yu et al., 2018), and soils (Cai 
et al., 2019). The reported algicidal microorganisms 
and algicidal mechanisms were collated in 
Supplementary Table S1 (Zheng et al., 2019). These 
microorganisms were mainly affi  liated with 
Bacteroidetes, α-Proteobacteria, β-Proteobacteria, 
γ-Proteobacteria, Actinomycetes, and Firmicutes. The 
algicidal bacteria inhibit algae by infl uencing algal 
cell integrity, enzymatic activities, gene expression, 
photosynthesis, respiration, and reproduction. For 
example,  Myxococcus  parasitized  Phormidium  and 
resulted in algal cell lysis (Burnham et al., 1984), and 
most algicidal bacteria inhibit algae via producing 
algicidal substances (Zhang et al., 2020a, b). 

 Bacteroidetes ( Flavobaterium ,  Cytophaga , and 
 Cellulophaga ), α-Proteobacteria ( Paracoccus , 
Rhodobacteraceae), β-Proteobacteria ( Thalassospira ), 
γ-Proteobacteria ( Alteromonas ,  Idiomarina ,  Vibrio , 
 Pseudoalteromonas ,  Halomonas , and  Marinobacter ), 

Actinomycetes ( Kocuria ), and Firmicutes ( Bacillus ) 
have proven to be able to inhibit or kill  K .  mikimotoi  
(Imai et al., 2006; Lu et al., 2016; Zheng et al., 2018), 
showing potential application in controlling 
 K .  mikimotoi . In our previous work, an isolated 
 Pseudoalteromonas  showed algicidal activity against 
 K .  mikimotoi , and caused the accumulation of reactive 
oxide species (ROS) and the apoptosis of algal cells 
(Zheng, 2019). Previous studies also reported that 
 Pseudoalteromonas  could inhibit algae from 
Dinophyceae ( Gymnodinium   catenatum , 
 Cochlodinium   polykrikoides ,  Akashiwo   sanguinea , 
and  Alexandrium   tamarense ), Raphidophyceae 
( Chattonella   marina  and  Heterosigma   akashiwo ), and 
diatom ( Skeletonema   costatum ) (Lovejoy and 
Bowman, 1998; Lee et al., 2000; Oh et al., 2011; Sun 
et al., 2016; Lyu et al., 2019). Due to its algicidal 
activity, the isolated  Pseudoalteromonas  QF1 was 
added into the culture of  K .  mikimotoi  to investigate 
its infl uences on the co-existing microbial community. 

 Recently, the microbiomes coexisting with algae 
have received extensive attention for better 
understanding the process and mechanism of algal 
bloom formation and extinction. However, the 
algicidal eff ects of the coexisting microbial 
communities on microalgae have rarely been studied. 
In this study, the microbial community coexisting 
with  K .  mikimotoi , their responses to nutrient addition 
and added algicidal strain  Pseudoalteromonas  QF1 
were investigated in microcosms. The hypothesis of 
nutrients stimulation is: microalgae are 
photoautotrophic; compared with microalgae, 
microorganisms have shorter growth and metabolism 
cycles, and give priority to nutrients; the added 
nutrients is limited, and not enough to cause massive 
growth of microalgae. 

 2 MATERIAL AND METHOD 

 2.1 Material 

 2.1.1  Karenia   mikimotoi  and cultivation 

  Karenia   mikimoto  i  was donated by Ocean 
University of China and was preserved in our 
laboratory. The culture was incubated and preserved 
in a sterile f/2 medium prepared with seawater 
(Guillard and Ryther, 1962) in 500-mL glass conical 
fl asks capped with aseptic breathable parafi lm. The 
used seawater was fi rst fi ltered through a 0.45-μm 
fi lter membrane to eliminate microorganisms. The f/2 
medium was autoclaved for 20 min at 121 °C before 
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use. Unless otherwise noted, all the algal cultivation 
was performed at 25  1 °C under a 12-h꞉12-h light-
dark cycle with a light intensity of 3 000 lx in a light 
incubator. The cultures were manually shaken three 
times per day to prevent the algae from growing 
against the wall of the fl ask.  

 Axenic algae culture was obtained via repetitive 
fi ltration using a 5.0-μm mixed cellulose ester 
membrane fi lter, which allows the microorganisms 
existing in the  K .  mikimoto  i  culture to pass through 
the membrane, while the algal cells are trapped (Baker 
and Kemp, 2014). The number of cultivable bacteria 
remained on the axenic culture were measured based 
on colony forming units (CFUs) counts: plating 
aliquots of samples on 2216E agar plates that were 
incubated at 25  1 °C for 24 h. The 2216E agar 
medium consisted of 1-g yeast extract, 5-g peptone, 
15-g agar, and 1-L seawater, with pH of 7.2, and was 
autoclaved for 20 min at 121 °C before use. After the 
aseptic processing, the bacteria in the algal culture 
decreased from 1.1×10 7  to 2.1×10 2  cells/mL.  

 The algal cells were fi xed with Lugol’s solution 
and counted under a light microscope using 
hemocytometer. The Lugol’s solution consisted of 4-g 
iodine (I 2 ) and 6-g potassium iodide (KI) in 100 mL of 
distilled water.  

 2.1.2  Pseudoalteromonas  QF1 

  Pseudoalteromonas  QF1 can eff ectively inhibit the 
growth of  K .  mikimotoi  through indirect way (Zheng 
et al., 2018). Strain QF1 was previously isolated from 
estuarine of the Yellow Sea, China. The strain was 
cultured in 200-mL sterile 2216E medium in 500-mL 
conical fl asks at 25  1 °C. 

 2.2 Method 

 2.2.1 Algicidal experiment 

 Because the lack of organic carbon source in the 
f/2 medium, it cannot meet the growth of 
microorganisms. Therefore, 2216E medium was used 
to stimulate the growth of microorganisms inhabiting 
 K .  mikimotoi  culture. Algicidal experiments consisting 
of control group (C), nutrient-stimulated group (E), 
and QF1 treated group (J) were conducted. The 
control group had no 2216E medium and QF1 
fermentation broth and was used to investigate the 
succession of the coexisting microbial community. In 
the nutrient-stimulated group, 4.5 mL (3%, 2216E 
medium volume/algal culture volume) and 9 mL (6%) 
of sterile 2216E medium were respectively added to 
150-mL  K .  mikimotoi  culture with an initial algal cell 

concentration of 8.0×10 4  cells/mL to investigate the 
infl uence of the 2216E medium on  K .  mikimotoi  and 
the coexisting microbial community. In addition,   
4.5-mL and 9-mL sterile 2216E was respectively 
added to 150-mL axenic  K .  mikimotoi  culture to form 
the control group of nutrients (A–E) to test the 
infl uence of the 2216E medium on the growth of  K . 
 mikimotoi . In the QF1 treated group, 4.5-mL (3%) 
and 9-mL (6%) QF1 cultures in the stationary phase 
(8.5×10 8  cells/mL) were respectively added to 150-mL 
 K .  mikimotoi  culture to investigate the infl uence of 
the added algicidal strain on  K .  mikimotoi  and the 
coexisting microbial community. Each of the 
experiments above was conducted in triplicate. The 
algal cells in each group were counted every 24 h, and 
the algal inhibition ratio, representing the algicidal 
activity, was estimated according to the following 
equation:  

A lgicidal rate (%)=(1– N  t / N  c )×100,  
 where  N  c  refers to the number of algal cells in the 
control group, and  N  t  refers to the number of algal 
cells in the treatment group.  

 For microbial DNA extraction, 50-mL microalgae 
suspension from each group was collected on the 3 rd , 
6 th , and 9 th  day, respectively, and were centrifuged at  
8 000 r/min at 4 °C for 5 min to collect microbial 
cells. The pellets from centrifugation were frozen at 
-80 °C before DNA extraction. Additionally, the 
number of cultivable microorganisms in  K .  mikimotoi  
cultures was measured based on counts of CFUs on 
2216E plates.  

 2.2.2 Microbial community 16S rRNA gene 
sequencing and analysis 

 Microbial genomic DNA was extracted using glass 
bead grinding method combined with an AxyPreP 
bacterial genomic DNA kit. Universal prokaryotic 
primers 336f (5′-GTACTCCTACGGGAGGCAG-
CA-3′) and 806r (5′-GTGGACTACHVGGGTWTC-
TAAT-3′) were used to amplify the V3–V4 region of 
microbial 16S rRNA gene. PCR products of the same 
sample in triplicate were mixed to minimize bias. The 
16S rRNA amplicons were examined by DNA 
electrophoresis on 2% agarose gel, and were recovered 
using AxyPrep DNA gel Recovery Kit. Amplicons 
were paired-end sequenced on the MiSeq platform 
based on PE300 (2×300 bp) in Allwegene Technology 
Co. Ltd., Beijing, China. Fastq data were processed 
using QIIME, version v.1.8.0 (Caporaso et al., 2010). 
After fi ltering low quality reads and chimeras, 16 714 
eff ective sequences were selected at random for each 
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sample for community analysis to reduce sequencing 
deviation. Sequences were assigned to operational 
taxonomic units (OTUs) at a 97% sequence similarity 
level using the UPARSE pipeline (Edgar, 2013). Goods 
coverage was used to assess the sequencing depth for 
the samples. The representative sequence sets were 
aligned and given a taxonomic classifi cation by 
ribosomal database project (RDP) against the SILVA 
Small Subunit rRNA database at an 80% confi dence 
threshold (Cole et al., 2014). The representative 
sequences of OTUs with the highest abundance were 
selected for tree building using ‘Maff t’ and ‘Fasttree’. 
The tree was visualized using R software (https://
www.r-project.org/) based on the abundance and 
evolutionary relationship at the genus level. 
‘Unweighted uniFrac’ only considers whether the 
microbial taxon appears in the community, but does not 
consider the abundance. However, the relative 
abundance of diff erent microbial taxon can be critical 
for describing the community changes. Therefore, 
‘weighted uniFrac’ that considers on abundance 
information during calculations was used here to 
illustrate the responses of the microbial community 
existing in  K .  mikimotoi  culture to the added 2216E 
medium and QF1 broth. Non-metric multidimensional 
scaling analysis (NMDS) based on Bray-Curtis of the 
OTUs and heatmap based on weighted unifrac distances 
were performed to visualize the changes in the 
microbial community in the control and treated groups. 
To determine the signifi cant diff erences in microbial 
β-diversity, analysis of molecular variance (AMOVA) 
depending on the weighted unifrac distance matrixes 
was analyzed using the ‘anosim’ function of ‘ade4’ 
package in R. Then, a Wilcoxon rank-sum test was 
performed to determine the microbial populations with 
statistically signifi cant diff erence between the control 
and treated groups. 

 3 RESULT 

 3.1 Growth of  K .    mikimotoi  in microcosms 

 The infl uences of the added 2216E medium and 
QF1 broth on the growth of  K .  mikimotoi  were 
investigated in the algicidal experiments consisting of 
control group (C), nutrient-stimulated group (E), and 
QF1 treated group (J). For the control group, the algae 
rapidly reproduced, with algal cell density increasing 
from 8.4×10 4  to 55.8×10 4  cells/mL   in 9 days. Adding 
both nutrients and QF1 fermentation broth caused 
mass mortality of  K .  mikimotoi , and the algal inhibition 
ratio reached up to 90% after 3 days of cultivation. 

The same amount of sterile 2216E medium was also 
added to the same volume of axenic  K .  mikimotoi  
culture, and no inhibiting eff ects on the growth of 
 K .  mikimotoi  were observed (Fig.1): the algal cell 
density increased from 8.4×10 4  to 52.0×10 4  cells/mL 
in 9 days for groups with 3% 2216E medium (A-E3), 
and 48.8×10 4  cells/mL for groups with 6% 2216E 
medium (A-E6). The results indicated that adding 
nutrients and QF1 broth could effi  ciently inhibit the 
growth of  K .  mikimotoi  in non-sterile environment. 
Additionally, the microorganisms existing in 
 K .  mikimotoi  culture would be stimulated by nutrients. 

 3.2 Sequencing information and the shared 
microbial OTUs  

 The sequencing coverage of the microbial 
communities in each sample ranged from 99.70% to 
99.96%, which could refl ect the whole of the microbial 
community in each sample. The responses of 
microorganisms existing in  K .  mikimotoi  culture to 
the added 2216E medium and QF1 broth were further 
investigated. A total of 424 OTUs were detected in 
the control group (average: 85  41 OTUs/sample), 
nutrient-stimulated group (average: 87  43 OTUs/
sample), and QF1 fermentation broth treated group 
(average: 82  34 OTUs/sample). Additionally, 140 
shared OTUs were detected in all groups. Among 
them, 13 OTUs were simultaneously detected in each 
sample, and were distributed in Rhodobacteraceae, 
 Maritimibacter ,  Marivita ,  Nisaea ,  Phaeodactylibacter , 
 Citreicella ,  Halomonas   meridiana ,  Alteromonas , 
 Marinobacter ,  Muricauda , and  Pseudoalteromonas  
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 Fig.1 The growth curves of  K .    mikimotoi    in microcosms  
 E3 and E6 represents 3% and 6% (v/v) nutrients treated groups; A-E3 
and A-E6 represents 3% and 6% nutrients control groups, in which, 
microorganisms were removed; J3 and J6 represents 3% and 6% QF1 
fermentation broth treated groups. 
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(Fig.2). The 13 OTUs accounted for 88.10%–97.04%, 
75.05%–96.03%, and 8.98%–88.18% of the microbial 
total relative abundances in the control, nutrient-
stimulated, and QF1 fermentation broth treated 
groups, respectively. 

 3.3 Microbial community coexisting   with  
  K .    mikimotoi  

 The number of cultivable microorganisms in the 
non-sterile  K .  mikimotoi  culture was approximately 
1.2×10 7 –1.9×10 7  cells/mL during algal cultivation. As 
shown in Fig.3, many microorganisms with diverse 
phylogenetic relationships coexist with well-grown 
 K .  mikimotoi . These microorganisms were affi  liated 
with 1 unidentifi ed phylum and 24 identifi ed phyla. 
The main phyla were Proteobacteria and Bacteroidetes, 
accounting for 76.24%±7.28% and 22.67%±8.32% of 
the whole community, respectively (Fig.3). A total of 
38 identifi ed classes were detected, including the 
dominant Alphaproteobacteria, Sphingobacteriia, 
Gammaproteobacteria, and Deltaproteobacteria, 
which accounted for 66.29%±5.60%, 21.51%±7.99%, 
8.69%±3.21%, and 1.24%±1.16% of the microbial 
community, respectively (Fig.4a). An unidentifi ed 
genus belonging to Rhodobacteraceae, 
 Phaeodactylibacter ,  Maritimibacter ,  Citreicella , 
 Marinobacter ,  Halomonas ,  Marivita ,  Oceanococcus , 
and  Pseudoalteromonas  predominated in  K .  mikimotoi  
culture, and accounted for 45.87%±10.97%, 
21.49%±7.99%, 14.45%±7.34%, 4.91%±2.29%, 
2.84%±1.93%, 1.96%±1.75%, 1.45%±1.80%, 
1.44%±2.46%, and 1.07%±0.97% of the microbial 

community, respectively (Fig.4b).  
 As shown in the NMDS graph (Fig.5a) and heatmap 

of the weighted unifrac dissimilarity matrix (Fig.5b), 
microbial communities from the 3 rd , 6 th , and 9 th  day of 
the  K .  mikimotoi  culture were clustered together. 
However, a slight succession of the microbial 
community was observed during the cultivation of 
 K .  mikimotoi  (Figs.4 & 5): the unidentifi ed 
Rhodobacteraceae genus decreased from 
57.52%±0.35% (3 rd  day) to 33.19%±0.47% (9 th  day), 
 Citreicella  decreased from 7.84%±0.60% (3 rd  day) to 
3.67%±0.17% (9 th  day),  Halomonas  decreased from 
4.20%±0.12% (3 rd  day) to 0.67%±0.16% (9 th  day), 
while  Phaeodactylibacter  increased from 
11.80%±1.46% (3 rd  day) to 24.13%±3.34% (9 th  day), 
and  Maritimibacter  increased from 7.33%±0.53% (3 rd  
day) to 22.99%±2.29% (9 th  day). 

 3.4 Responses of the microbial community to 
nutrient stimulation 

 Compared with the control group, the number of 
coexisting microorganisms increased to 2.5×10 8 –
3.9×10 8  cells/mL in the nutrient-stimulated group, and 
the microbial community compositions showed an 
obvious change (Figs.4 & 6a), forming a distinct 
cluster in the NMDS graph (Fig.5a), with a signifi cant 
weighted unifrac dissimilarity (Fig.5b; AMOVA, 
 F s=12.637 7,  P <0.001). The Wilcoxon rank-sum test 
revealed the genera with signifi cantly diff erent 
abundances between the control and nutrient-
stimulated groups (Fig.6a,  P <0.05). Compared with 
the control group, the genus that belongs to 
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Rhodobacteraceae,  Phaeodactylibacter , and 
 Maritimibacter  signifi cantly decreased, while 
 Halomonas  and  Alteromonas  became dominant on the 
3 rd  and 6 th  days in the 3% nutrient-stimulated group. It 
is worth noting that  Halomonas  and  Alteromonas  
decreased again on the 9 th  day of algal cultivation, 
while  Phaeodactylibacter  and  Maritimibacter  
obviously increased. Accordingly, the microbial 
community on the 9 th  day in the 3% nutrient-stimulated 
group showed a higher similarity with those in the 
control group (Fig.5b), and clustered together in the 
NMDS plot (Fig.5a). Diff ering with the 3% nutrient-
stimulated group,  Halomonas  and  Alteromonas  always 
dominated during the algal cultivation process in the 
6% nutrient-stimulated group, accounting for 44.38%–
55.13% and 5.97%–31.13% of the microbial 
community, respectively. The community in the 6% 

nutrient-stimulated group had a higher dissimilarity 
with those in the control group (Fig.5). 

 3.5 Responses of the microbial community to 
added algicidal strain QF1 

 QF1 fermentation broth treatment signifi cantly 
changed the microbial community coexisting with 
 K .  mikimotoi  (Figs.4 & 6b; AMOVA,  F s=10.204 9, 
 P <0.001). The changes in the microbial community 
were also signifi cantly diff erent from those in the 
nutrient-stimulated group (Figs.4 & 6c; AMOVA, 
 F s=12.399 8,  P <0.001). In the 3% QF1 treated group, 
the relative abundances of  Pseudoalteromonas  were 
83.52%–90.83% at the 3 rd  day, decreasing to 33.42%–
68.45% at the 6 th  day, with further decreases to 
1.10%–9.50% at the 9 th  day. Conversely, the genus 
that belongs to Rhodobacteraceae,  Phaeodactylibacter , 

Paeniglutamicibacter
Brevibacterium
Georgenia
BifidobacteriumCorynebacterium_1Candidatus_Microthrix

CollinsellaOlsenellaUnculturedLeptolineaLongilineaSM1A02
Nitrospira

Phytophthora_lateralis_M
PF4

Cylindrotheca_closterium

Balneola
Terrimonas

Marinoscillum

Phaeodactylibacter

Moheibacter

Petrimonas

Chryseobacterium

Cloacibacterium

Leeuwenhoekiella

M
uricauda

Lentimicrobium

Sphingobacterium

Owenweeksia

Bacteroides

Alistipes

M
esotoga

Stenotrophobacter

Am
inivibrio

Butyricicoccus

Eubacterium
_
co

p
ro

stan
o
lig

en
es_

g
ro

u
p

Blautia
Acetitom

aculum
D

o
rea

Ru
m

in
oc

oc
cu

s_
to

rq
u
es

_
g
ro

u
p

H
ow

ar
de

lla

Sy
nt

ro
ph

oc
oc

cu
s

La
ch

no
cl

os
tri

di
um

Ru
m

in
oc

oc
cu

s_
1

An
ae

ro
tru

nc
us

Su
bd

ol
ig

ra
nu

lu
m

Fa
ec

al
ib

ac
te

riu
m

Ru
m

in
ic

lo
str

id
iu

m
_1

R
u
m

in
o
co

cc
ac

ea
e_

U
C

G
-0

1
4

R
um

in
oc

oc
ca

ce
ae

_U
C

G
-0

05

R
um

in
oc

oc
ca

ce
ae

_N
K

4A
21

4_
gr

ou
p

Os
cil

lib
ac

ter

C
an

di
da

te
_d

iv
is

io
n_

W
S
6

C
hr

is
te

ns
en

el
la

ce
ae

_R
-7

_g
ro

up

Sh
ar

pe
a

E
ry

si
pe

lo
tr
ic

ha
ce

ae
_U

C
G

-0
02

So
lob

ac
ter

ium

Cate
nis

ph
ae

ra

Str
ept

oco
ccu

s

Lacto
coccu

s

Tric
hococcu

s
Bacill

us

Staphylo
coccu

s

Enterococcus
Lactobacillus

PediococcusWeissellaLeuconostoc
PaenibacillusMitsuokellaDialisterMegasphaeraGelriaPelotomaculumTissierella

Proteocatella
Eubacterium_nodatum_group

Anaerovorax
Romboutsia

Acetoanaerobium

Gemmatimonas

Caldithrixa

Desulfomicrobium
H16

Sorangium

Nannocystis

Unidentified_marine_bacterioplankton

Desulfomonile

Geobacter

Smithella

Syntrophus

Syntrophorhabdus

Pseudomonas

Marinobacter

Carnimonas

Halomonas

Pseudohongiella
Klebsiella

Escherichia-Shigella

Pseudoalteromonas

Succinivibrio
Aeromonas

Salinimonas
Alteromonas

Vibrio
M

izugakiibacter
Pseudofulvim

onas
D

yella
Alkanibacter

O
ceanococcus
Variovorax

Azohydrom
onas

Pelom
onas

Parasutterella Th
io

ba
ci

llu
s

Th
au

er
a

M
et

hy
lo

te
ne

ra
St

el
la

Ca
nd

id
at

us
_F

in
ni

el
la

Pl
eo

m
or

ph
om

on
as

Ta
br

izi
co

la
Ru

be
lli

m
ic

ro
bi

um
Ci

tre
ic

el
la

Ro
se

ov
ar

iu
s

Pa
ra

co
cc

us
M

ar
ivi

ta
M

ar
iti

mi
ba

cte
r

Oric
ola

Co
ha

es
iba

cte
r

La
br

en
zia

Hyp
ho

micr
ob

ium

Filo
micr

ob
ium

Ped
om

icr
ob

ium

Meth
ylo

sin
us

Pon
tic

au
lis

Hyphomonas

Brev
undimonas

Ocea
nica

ulis

Porphyrobacter

Sphingobium

Novosphingobium

Sneathiella

Candidatus_Phaeomarinobacter

Methylobacterium

Dongia

Acetobacter

Gluconobacter

Roseomonas

Craurococcus
Nisaea
Candidatus_Alysiosphaera

 Proteobacteria (76.24%±7.28%)

 
Deferribacteres(<0.01%)

 Firm
icu

tes
 

(0
.80%

±1.77%
)

Bacteroidetes (22.67%
±8.32%

)

 Chloroflexi (<0.05%)

 Planctomycetes (<0.1%)

Actinobacteria (<0.1%)

 Nitrospirae (<0.01%)

 Cyanobacteria (<0.5%)

 T
h
erm

o
to

g
ae (<

0
.0

1
%

)

 A
cid

o
b
acteria (<

0
.0

1
%

)

S
y
n
erg

istetes (<
0
.0

1
%

)
Gemmatimonadetes(<0.001%)

 Fig.3 Phylogenetic tree and abundance at phylum level of the microorganisms coexisting with  K .    mikimotoi  
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and  Maritimibacter  signifi cantly increased from 
3.74%–5.52%, 0.42%–0.89%, and 0.62%–1.14% on 
the 3 rd  day to 37.10%–39.49%, 28.86%–29.45%, and 
6.19%–6.80% on the 9 th  day, respectively. The 
microbial community at the 9 th  day in the 3% QF1 
treated group showed a higher similarity with those in 
the control group (Fig.5b), and clustered together in 
the NMDS plot (Fig.5a). The 6% QF1 treated group 
had community compositions similar to those of the 
3% QF1 treated group at the 3 rd  and 6 th  day, and 
 Pseudoalteromonas  signifi cantly decreased on the 9 th  
day. Diff ering with 3% QF1 treated group, the 
unidentifi ed Rhodobacteraceae genus and 
 Phaeodactylibacter  did not obviously increase on the 
9 th  day. As a result, the microbial community in the 
6% QF1 treated group at the 9 th  day showed higher 
dissimilarity with those in the control group. 

 4 DISCUSSION 

 This study detected a number of microbial populations 
in  K .  mikimotoi  culture without nutrients and QF1 broth 
stimulation. The dominant populations were assigned to 
Rhodobacteraceae and Saprospiraceae, which were 
broadly observed in marine algal-associated microbial 
communities, such as  Ulva   australis  (Burke et al., 2011) 
and  Gymnodinium -diatomm bloom cycles (Shao et al., 
2020). Rhodobacteraceae is frequently detected in 
marine environments, consisting of diverse species 
which can utilize various organic and inorganic 
compounds and play important roles in sulfur and 
carbon biogeochemical cycling (Pujalte et al., 2014). 
This type of microorganism includes  Citreicella , 
 Marivita ,  Labrenzia ,  Maritimibacter , and  Roseovarius . 
Species from Saprospiraceae are also frequently isolated 
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from marine environments, which are generally aerobic 
and chemoheterotrophic, and can hydrolyze complex 
carbon sources (Mcilroy and Nielsen, 2014). In this 
study,  Phaeodactylibacter , a genus of Saprospiraceae, 
was detected in the  K .  mikimotoi  culture. Previous 
researches have isolated the species from 
 Phaeodactylibacter  from alga  Phaeodactylum  
 tricornutum  and  Picochlorum  sp. (Chen et al., 2014; Lei 
et al., 2015). These microorganisms likely benefi t from 
the microalgae, which produce dissolved organic carbon 
compounds and oxygen through photosynthesis, and in 
turn may improve algal growth by providing nutrient, 
such as vitamins, iron, and ammonia (Amin et al., 2012). 

 Except for the dominant populations,  Halomonas , 
 Alteromonas ,  Pseudoalteromonas , and  Marinobacter  
were also detected in  K .  mikimotoi  culture without 
nutrients and QF1 broth stimulation. Previous studies 
have reported that these populations could inhibit the 
growth of some harmful microalgae. Extracts of 
 Halomonas  sp. HSB07 could inhibit the red-tide 
microalgae  Gymnodinium  (Pyrrophyta) (Liu et al., 
2013).  Alteromonas  sp. A14 caused a signifi cant 
decrease in  Cochlodinium   polykrikoides  (Lee et al., 
2008).  Pseudoalteromonas  S1 can lyse  Akashiwo  
 sanguinea  in both direct and indirect ways (Sun et al., 
2016). In our previous work, algicidal strains from 
 Halomonas ,  Alteromonas ,  Pseudoalteromonas , and 
 Marinobacter  were also isolated from co-cultures of 

 K .  mikimotoi  with sea water and estuarine soil of the 
Yellow Sea, China, and showed a high inhibition of 
 K .  mikimotoi  (Zheng et al., 2018). Although these 
microbial populations increased slightly during the 
cultivation of  K .  mikimotoi , they never predominated 
in the coexisting microbial community. In addition, 
the number of cultivable microorganisms in the 
 K .  mikimotoi  culture was low during algal cultivation. 
This could possibly explain why the growth of algal 
cells was not obviously inhibited, even when 
coexisting with these microbial populations. This 
phenomenon indicated that the limited nutrient in the 
culture of  K .  mikimotoi  were not suffi  cient to promote 
the growth of the coexisting microorganisms. The 
limit nutrient refers to the f/2 medium, which contains 
75-mg/L NaNO 3  and 5-mg/L NaH 2 PO 4  that can satisfy 
the growth of microalgae. However, it cannot meet 
the massive growth of microorganisms because the 
lack of organic carbon source. As for achieving the 
purpose of algal inhibition in nutrient-stimulated 
groups, it was demonstrated later. 

 Nutrient addition increased microbial abundance 
and obviously changed the composition of the microbial 
community existing in the  K .  mikimotoi  culture. After 
nutrient stimulation, the relative abundance of an 
unclassifi ed genus belonging to Rhodobacteraceae and 
 Phaeodactylibacter  signifi cantly decreased, while 
 Halomonas  and  Alteromonas  gradually became the 
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 Fig.6 Heatmaps and Histograms with error bar of the microbial populations revealed by Wilcoxon rank-sum test 
 The microbial populations with signifi cantly diff erential abundance between the control and nutrients stimulated groups; b. the control and QF1 treated 
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fi rst number following E and J represents the proportions of added nutrients or QF1 fermentation broth, the second number and the fi rst number following C 
represents the sampling time points in algal cultivation process, the last number represents the replicates.  
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dominant populations. In nutrient-stimulated groups, a 
high mortality of  K .  mikimotoi  was observed. 
Furthermore, the 6% nutrient stimulation resulted in a 
higher mortality of  K .  mikimotoi  than the 3% nutrient-
stimulated groups. Algal inhibition was not observed 
when we added the same nutrient to the axenic 
 K .  mikimotoi  culture, indicating that the growth of 
some microorganisms rather than the nutrient 
components inhibited algal growth in nutrient-
stimulated group. Therefore, it has been concluded that 
nutrient stimulated the growth and metabolism of the 
coexisting microorganisms in the  K .  mikimotoi  culture, 
and the latter inhibited algal growth. Almost as 
remarkably, the microbial communities of 3% nutrients 
treated groups became similar with those of the control 
groups at the 9 th  day, and the relative abundance of 
 Halomonas  and  Alteromonas  decreased, but always 
dominated in the 6% nutrient-stimulated group during 
the cultivation process. These results indicated the 
robustness of the microbial community in the 
 K .  mikimotoi  culture to low-dose nutrient disturbance.  

 The QF1 fermentation broth had a high algicidal 
activity against the  K .  mikimotoi . Although the added 
QF1 fermentation broth rapidly changed the 
composition of the microbial community existing in 
 K .  mikimotoi  culture in the initial phase, the relative 
abundance of  Pseudoalteromonas  substantially 
decreased in the microbial community on the 9 th  day. 
Furthermore,  Pseudoalteromonas  was detected in 
 K .  mikimotoi  culture, yet it did not become a dominant 
population in the nutrient stimulation process. It seems 
that  Pseudoalteromonas  does not have competitive 
edges in the microbial community existing in 
 K .  mikimotoi  culture. In addition, the robustness of the 
microbial community in the  K .  mikimotoi  culture to 
low-dose QF1 fermentation broth disturbance was 
also observed: the microbial communities of QF1 
treated groups became similar with those of the control 
groups on the 9 th  day. Therefore, adding fermentation 
broth of  Pseudoalteromonas  QF1 has potential 
application on controlling  K .  mikimotoi . 

 It should be noted that 13 OTUs were simultaneously 
detected in each sample, and predominated in 
 K .  mikimotoi  culture with or without treatment. These 
OTUs were assigned to Rhodobacteraceae, 
 Maritimibacter ,  Marivita ,  Nisaea ,  Phaeodactylibacter , 
 Citreicella ,  Halomonas   meridiana ,  Alteromonas , 
 Marinobacter ,  Muricauda , and  Pseudoalteromonas . 
Furthermore, these OTUs include the dominant 
populations in  K .  mikimotoi  culture, such as 
Rhodobacteraceae,  Phaeodactylibacter ,  Maritimibacter , 

and the dominant populations in nutrient-treated  K . 
 mikimotoi  culture, such as  Halomonas   meridiana  and 
 Alteromonas . This phenomenon indicated that the 
aforesaid 13 OTUs are the principal parts of the microbial 
communities in the  K .  mikimotoi  culture, and the changes 
of microbial communities observed in the  K .  mikimotoi  
culture with or without treatments could be represented 
by the changes of the 13 OTUs. 

 5 CONCLUSION 

 Having investigated the succession of the microbial 
community existing in  K .  mikimotoi  culture, and the 
infl uences of added nutrients and exogenous algicidal 
strain on the growth of  K .  mikimotoi , diverse microbial 
populations were detected in  K .  mikimotoi  culture and 
could be selectively stimulated by nutrients, thereby 
inhibiting the growth of  K .  mikimotoi . Adding 
algicidal strain  Pseudoalteromonas  also eff ectively 
inhibited the growth of  K .  mikimotoi . Moreover, the 
microbial community existing in  K .  mikimotoi  culture 
showed robustness to low-dose nutrients and QF1 
disturbance. This study provides insights for microbial 
control of  K .  mikimotoi  via nutrient stimulation of the 
coexisting microorganisms or by adding fermentation 
broth of isolated algicidal strains. However, the 
amount of the added nutrients or fermentation broth 
of isolated algicidal strain will be studied to avoid 
secondary pollution to the marine environment. 

 6 DATA AVAILABILITY STATEMENT 

 The raw reads from 16S rRNA gene Illumina 
MiSeq sequencing have been submitted to the NCBI 
Sequence Read Archive (SRA) with the accession 
number SUB6782573. The 16S rRNA gene sequence 
of QF1 have been deposited in the GenBank database 
with the accession number MG457253. 
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