Cite this paper:
Tonggang Han, Jiangxin Chen, Leonardo Azevedo, Bingshou He, Huaning Xu, Rui Yang. Quantitative estimation of bubble volume fraction of submarine seep plumes by modeling seismic oceanography data[J]. Journal of Oceanology and Limnology, 2023, 41(2): 673-686

Quantitative estimation of bubble volume fraction of submarine seep plumes by modeling seismic oceanography data

Tonggang Han1, Jiangxin Chen2,3, Leonardo Azevedo4, Bingshou He1,3, Huaning Xu2,3, Rui Yang2,3
1. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao, 266100, China;
2. Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao, 266071, China;
3. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao, 266237, China;
4. CERENA, DECivil, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
Abstract:
Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient. When detected using acoustic data, the leaked gases frequently exhibit a flame-like structure. We numerically modelled the relationship between the seismic response characteristic and bubble volume fraction to establish the bubble volume fraction in the submarine seep plume. Results show that our models are able to invert and predict the bubble volume fraction from field seismic oceanography data, by which synthetic seismic sections in different dominant frequencies could be numerically simulated, seismic attribute sections (e.g., instantaneous amplitude, instantaneous frequency, and instantaneous phase) extracted, and the correlation between the seismic attributes and bubble volume fraction be quantitatively determined with functional equations. The instantaneous amplitude is positively correlated with bubble volume fraction, while the instantaneous frequency and bubble volume fraction are negatively correlated. In addition, information entropy is introduced as a proxy to quantify the relationship between the instantaneous phase and bubble volume fraction. As the bubble volume fraction increases, the information entropy of the instantaneous phase increases rapidly at the beginning, followed by a slight upward trend, and finally stabilizes. Therefore, under optimal noise conditions, the bubble volume fraction of submarine seep plumes can be inverted and predicted based on seismic response characteristics in terms of seismic attributes.
Key words:    seismic oceanography|submarine seep plumes|bubble volume fraction|seismic response characteristics|seismic attribute analysis|quantitative analysis   
Received: 2021-12-09   Revised:
Tools
PDF (3734 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Tonggang Han
Articles by Jiangxin Chen
Articles by Leonardo Azevedo
Articles by Bingshou He
Articles by Huaning Xu
Articles by Rui Yang
References:
[1] Aki K, Richards P G. 1980. Quantitative Seismology:Theory and Methods. W. H. Freeman and Co., San Francisco, California. 557p.
[2] Azevedo L, Matias L, Turco F et al. 2021. Geostatistical seismic inversion for temperature and salinity in the Madeira Abyssal Plain. Frontiers in Marine Science, 8:685007, https://doi.org/10.3389/fmars.2021.685007.
[3] Baysal E, Kosloff D D, Sherwood J W C. 1983. Reverse time migration. Geophysics, 48(11):1514-1524, https://doi.org/10.1190/1.1441434.
[4] Berndt C, Feseker T, Treude T et al. 2014. Temporal constraints on hydrate-controlled methane seepage off Svalbard. Science, 343(6168):284-287, https://doi.org/10.1126/science.1246298.
[5] Campbell K A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology:past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4):362-407, https://doi.org/10.1016/j.palaeo.2005.06.018.
[6] Chattopadhyday S, McMechan G A. 2008. Imaging conditions for prestack reverse-time migration. Geophysics, 73(3):S81-S89, https://doi.org/10.1190/L2903822.
[7] Chen D F, Chen X P, Chen G Q. 2002. Geology and geochemistry of cold seepage and venting-related carbonates. Acta Sedimentologica Sinica, 20(1):34-40, https://doi.org/10.3969/j.issn.1000-0550.2002.01.007. (in Chinese with English abstract)
[8] Chen J X, Song H B, Guan Y X et al. 2017. A preliminary study of submarine cold seeps applying Seismic Oceanography techniques. Chinese Journal of Geophysics, 60(2):604-616, https://doi.org/10.6038/cjg20170215. (in Chinese with English abstract)
[9] Chen J X, Tong S Y, Han T G et al. 2020. Modelling and detection of submarine bubble plumes using seismic oceanography. Journal of Marine Systems, 209:103375, https://doi.org/10.1016/j.jmarsys.2020.103375.
[10] Chen Z, Yang H P, Huang Q Y et al. 2007. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments. Journal of Tropical Oceanography, 26(6):73-82, https://doi.org/10.3969/j.issn.1009-5470.2007.06.013. (in Chinese with English abstract)
[11] Deng F, McMechan G A. 2008. Viscoelastic true-amplitude prestack reverse-time depth migration. Geophysics, 73(4):S143-S155, https://doi.org/10.1190/1.2938083.
[12] Frankel A, Clayton R W. 1984. A finite-difference simulation of wave propagation in two-dimensional random media. Bulletin of the Seismological Society of America, 74(6):2167-2186.
[13] Frankel A, Clayton R W. 1986. Finite difference simulations of seismic scattering:implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity. Journal of Geophysical Research:Solid Earth, 91(B6):6465-6489, https://doi.org/10.1029/JB091iB06p06465.
[14] Garcia-Gil S, Vilas F, Garcia-Garcia A. 2002. Shallow gas features in incised-valley fills (Ría de Vigo, NW Spain):a case study. Continental Shelf Research, 22(16):2303-2315, https://doi.org/10.1016/S0278-4343(02)00057-2.
[15] Greinert J, Artemov Y, Egorov V et al. 2006. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea:hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 244(1-2):1-15, https://doi.org/10.1016/j.epsl.2006.02.011.
[16] Gu Z F, Liu H S, Zhang Z X. 2008. Acoustic detecting method for bubbles from shallow gas to sea water. Marine Geology & Quaternary Geology, 28(2):129-135, https://doi.org/10.16562/j.cnki.0256-1492.2008.02.004. (in Chinese with English abstract)
[17] Gu Z F, Zhang Z X, Liu H S. 2006. Seismic features of shallow gas in the western area of the Yellow Sea. Marine Geology & Quaternary Geology, 26(3):65-74, https://doi.org/10.16562/j.cnki.0256-1492.2006.03.010. (in Chinese with English abstract)
[18] Holbrook W S, Páramo P, Pearse S et al. 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301(5634):821-824, https://doi.org/10.1126/science.1085116.
[19] IOC, SCOR, IAPSO. 2010. The International Thermodynamic Equation of Seawater-2010:calculation and use of Thermodynamic Properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56. UNESCO, 196p.
[20] Judd A, Hovland M. 2007. Seabed Fluid Flow:The Impact on Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge, United Kingdom. 408p.
[21] Judd A G. 2003. The global importance and context of methane escape from the seabed. Geo-Marine Letters, 23(3-4):147-154, https://doi.org/10.1007/s00367-003-0136-z.
[22] Judd A G, Hovland M, Dimitrov L I et al. 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2(2):109-126, https://doi.org/10.1046/j.1468-8123.2002.00027.x.
[23] Kelly K R, Ward R W, Treitel S et al. 1976. Synthetic seismograms:a finite-difference approach. Geophysics, 41(1):2-27, https://doi.org/10.1190/1.1440605.
[24] Kruglyakova R, Gubanov Y, Kruglyakov V et al. 2002. Assessment of technogenic and natural hydrocarbon supply into the Black Sea and seabed sediments. Continental Shelf Research, 22(16):2395-2407, https://doi.org/10.1016/S0278-4343(02)00064-X.
[25] Leifer I, MacDonald I. 2003. Dynamics of the gas flux from shallow gas hydrate deposits:interaction between oily hydrate bubbles and the oceanic environment. Earth and Planetary Science Letters, 210(3-4):411-424, https://doi.org/10.1016/S0012-821X(03)00173-0.
[26] Leifer I, Patro R K. 2002. The bubble mechanism for methane transport from the shallow sea bed to the surface:a review and sensitivity study. Continental Shelf Research, 22(16):2409-2428, https://doi.org/10.1016/S0278-4343(02)00065-1.
[27] Li C P, Liu X W, Gou L M et al. 2013. Numerical simulation of bubble plumes in overlying water of gas hydrate in the cold seepage active region. Science China Earth Sciences, 56(4):579-587, https://doi.org/10.1007/s11430-012-4508-y.
[28] Luan X W, Liu H, Yue B J et al. 2010. Characteristics of cold seepage on side scan sonar sonogram. Geoscience, 24(3):474-480, https://doi.org/10.3969/j.issn.1000-8527.2010.03.009. (in Chinese with English abstract)
[29] Luan X W, Qin Y S. 2005. Gas seepage on the sea floor of Okinawa Trough Miyako section. Chinese Science Bulletin, 50(13):1358-1365, https://doi.org/10.1360/04wd0257.
[30] Luan X W, Jin Y K, Obzhirov A et al. 2008. Characteristics of shallow gas hydrate in Okhotsk Sea. Science in China Series D:Earth Sciences, 51(3):415-421, https://doi.org/10.1007/s11430-008-0018-3.
[31] Madariaga R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3):639-666, https://doi.org/10.1785/BSSA0660030639.
[32] McGinnis D F, Greinert J, Artemov Y et al. 2006. Fate of rising methane bubbles in stratified waters:how much methane reaches the atmosphere? Journal of Geophysical Research:Oceans, 111(C9):C09007, https://doi.org/10.1029/2005JC003183.
[33] Merewether R, Olsson M S, Lonsdale P. 1985. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California. Journal of Geophysical Research:Solid Earth, 90(B4):3075-3085, https://doi.org/10.1029/JB090iB04p03075.
[34] Naudts L, Greinert J, Poort J et al. 2010. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand:diffusive- versus bubble-released methane. Marine Geology, 272(1-4):233-250, https://doi.org/10.1016/j.margeo.2009.08.002.
[35] Papenberg C, Klaeschen D, Krahmann G et al. 2010. Ocean temperature and salinity inverted from combined hydrographic and seismic data. Geophysical Research Letters, 37(4):L04601, https://doi.org/10.1029/2009GL042115.
[36] Paull C K, Ussler III W, Borowski W S et al. 1995. Methane-rich plumes on the Carolina continental rise:associations with gas hydrates. Geology, 23(1):89-92, https://doi.org/10.1130/0091-7613(1995)023<0089:MRPOTC>2.3.CO;2.
[37] Ruddick B, Song H B, Dong C Z et al. 2009. Water column seismic images as maps of temperature gradient. Oceanography, 22(1):192-205, https://doi.org/10.5670/oceanog.2009.19.
[38] Sakakibara Y, Matsushima J. 2019. Wrapround multiple reflectors over the seafloor in the gas hydrate area:a possible indicator of methane plume. Ocean Science Journal, 54(4):621-633, https://doi.org/10.1007/s12601-019-0040-8.
[39] Sassen R, Losh S L, Cathles III L et al. 2001. Massive veinfilling gas hydrate:relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico. Marine and Petroleum Geology, 18(5):551-560, https://doi.org/10.1016/S0264-8172(01)00014-9.
[40] Shannon C E. 1948a. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379-423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
[41] Shannon C E. 1948b. A mathematical theory of communication. The Bell System Technical Journal, 27(4):623-656, https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.
[42] Suess E. 2014. Marine cold seeps and their manifestations:geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103(7):1889-1916, https://doi.org/10.1007/s00531-014-1010-0.
[43] Swift S A, Dougherty M E, Stephen R A. 1990. Finite difference seismic modeling of axial magma chambers. Geophysical Research Letters, 17(12):2105-2108, https://doi.org/10.1029/GL017i012p02105.
[44] Thatcher K E, Westbrook G K, Sarkar S et al. 2013. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin:timing, rates, and geological controls. Journal of Geophysical Research:Solid Earth, 118(1):22-38, https://doi.org/10.1029/2012JB009605.
[45] Wan Z F, Chen C M, Liang J Q et al. 2020. Hydrochemical characteristics and evolution mode of cold seeps in the Qiongdongnan Basin, South China Sea. Geofluids, 2020:4578967, https://doi.org/10.1155/2020/4578967.
[46] Wei J G, Wu T T, Deng X G et al. 2020. Acoustic characteristics of cold-seep methane bubble behavior in the water column and its potential environmental impact. Acta Oceanologica Sinica, 39(5):133-144, https://doi.org/10.1007/s13131-019-1489-0.
[47] Westbrook G K, Chand S, Rossi G et al. 2008. Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. Marine and Petroleum Geology, 25(8):744-758, https://doi.org/10.1016/j.marpetgeo.2008.02.003.
[48] Wilson W D. 1962. Extrapolation of the equation for the speed of sound in sea water. The Journal of the Acoustical Society of America, 34(6):866, https://doi.org/10.1121/1.1918215.
[49] Wu R S, Aki K. 1988. Introduction:seismic wave scattering in three-dimensionally heterogeneous earth. Pure and Applied Geophysics, 128(1-2):1-6, https://doi.org/10.1007/BF01772587.
[50] Xie G, Zhang X Y. 2014. New model of natural gas pressure and density and its application. Journal of Oil and Gas Technology, 36(8):116-120, https://doi.org/10.3969/j.issn.1000-9752.2014.08.026. (in Chinese with English abstract)
[51] Yang S X. 2019. Research on Gas Hydrate Accumulation in South China Sea. Science Press, Beijing, China. p. 360-409. (in Chinese)
[52] You J C, Li C P, Cheng L F et al. 2015. Numerical simulation of methane plumes based on effective medium theory. Arabian Journal of Geosciences, 8(11):9089-9100, https://doi.org/10.1007/s12517-015-1916-2.
Copyright © Haiyang Xuebao