Cite this paper:
Jingya Cao, Shengxiong Yang, Danling Tang, Junxi Feng, Jinqiang Liang. Mg/Ca, Ba/Ca, and S/Ca ratios as environmental and growth proxies for bivalve shells from the Haima cold seep, South China Sea[J]. Journal of Oceanology and Limnology, 2023, 41(2): 660-672

Mg/Ca, Ba/Ca, and S/Ca ratios as environmental and growth proxies for bivalve shells from the Haima cold seep, South China Sea

Jingya Cao1,2, Shengxiong Yang1, Danling Tang1, Junxi Feng3, Jinqiang Liang3
1. Southern Marine Science and Engineering, Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China;
2. Department of Ocean Science, Hong Kong University of Science & Technology, Hong Kong, 999077, China;
3. MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou, 510075, China
Abstract:
Bivalve shell fossils, cemented by authigenic carbonates, are widely spread in the Haima cold seep, Qiongdongnan Basin of the South China Sea (SCS). In this study, we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1 381 m. Based on the scanning electron microscope (SEM) analyses, the prismatic layer and nacreous layer were identified, which are characterized by prismatic structure and stratified structure, respectively. In addition, the profile can be subdivided into two parts: altered and unaltered zones. Laser inductively coupled plasma mass spectrometry (LA-ICP-MS) mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks, whereas the element concentrations of unaltered zones remain stable. In-situ X-ray diffraction (XRD) analyses show that the mineral constituent of the nacreous layer is mainly composed of aragonite. Along with the growth profile, Mg/Ca ratios of unaltered zones have minor variations, ranging 0.72-0.97 mmol/mol (mean=0.87 mmol/mol), with estimated temperatures of 3.8-4.1 ℃, indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9 ℃ which was conducted by a conductivity-temperature-depth system (CTD). The minor variations of Ba/Ca ratios (0.01-0.06 mmol/mol; mean=0.04 mmol/mol) indicate a relatively stabilized salinity of the surrounding seawater. S/Ca ratios show large variations of 0.04-4.15 mmol/mol (mean=1.37 mmol/mol). S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios, highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides. However, further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.
Key words:    Mg/Ca, Ba/Ca, and S/Ca ratios|laser inductively coupled plasma mass spectrometry (LA-ICPMS)|Gigantidas platifrons|Haima cold seep|South China Sea   
Received: 2022-01-11   Revised:
Tools
PDF (6839 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Jingya Cao
Articles by Shengxiong Yang
Articles by Danling Tang
Articles by Junxi Feng
Articles by Jinqiang Liang
References:
[1] Boetius A, Ravenschlag K, Schubert C J et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804):623-626, https://doi.org/10.1038/35036572.
[2] Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, 6(9):725-734, https://doi.org/10.1016/10.1038/NGEO1926.
[3] Bowles M W, Samarkin V A, Hunter K S et al. 2019. Remarkable capacity for anaerobic oxidation of methane at high methane concentration. Geophysical Research Letters, 46(21):12192-12201, https://doi.org/10.1029/2019GL084375.
[4] Busenberg E, Plummer L N. 1985. Kinetic and thermodynamic factors controlling the distribution of SO32- and Na+ in calcites and selected aragonites. Geochimica et Cosmochimica Acta, 49(3):713-725, https://doi.org/10.1016/0016-7037(85)90166-8.
[5] Callender W R, Powell E N. 1999. Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? International Journal of Earth Sciences, 88(3):377-391, https://doi.org/10.1007/s005310050273.
[6] Campbell K A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology:past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4):362-407, https://doi.org/10.1016/j.palaeo.2005.06.018.
[7] Ceramicola S, Dupré S, Somoza L et al. 2018. Cold seep systems. In:Micallef A, Krastel S, Savini A eds. Submarine Geomorphology. Springer, Cham. p.367-387.
[8] Chen F, Hu Y, Feng D et al. 2016. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology, 443:173-181, https://doi.org/10.1016/j.chemgeo.2016.09.029
[9] Chen L, Liu Y S, Hu Z C et al. 2011. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chemical Geology, 284(3-4):283-295, https://doi.org/10.1016/j.chemgeo.2011.03.007.
[10] Cuif J P, Dauphin Y D, Farre B et al. 2008. Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units. Mineralogical Magazine, 72(1):233-237, https://doi.org/10.1180/minmag.2008.072.1.233.
[11] Dauphin Y, Cuif J P, Salomé M et al. 2005. Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge. American Mineralogist, 90(11-12):1748-1758, https://doi.org/10.2138/am.2005.1640.
[12] Dauphin Y D, Cuif J P. 1999. Relationship between mineralogy and microstructural patterns of calcareous biominerals and their sulfur contents. Annales des Sciences Naturelles-Zoologie et Biologie Animale, 20(2):73-85, https://doi.org/10.1016/S0003-4339(99)80010-0.
[13] de Nooijer L J, Brombacher A, Mewes A et al. 2017. Ba incorporation in benthic foraminifera. Biogeosciences, 14(14):3387-3400, https://doi.org/10.5194/bg-14-3387-2017.
[14] Dodd J R, Crisp E L. 1982. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 38(1-2):45-56, https://doi.org/10.1016/0031-0182(82)90063-3.
[15] Dong X Y, Rattray J E, Campbell D C et al. 2020. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nature Communications, 11(1):5825, https://doi.org/10.1038/s41467-020-19648-2.
[16] Elliot M, Welsh K, Chilcott C et al. 2009. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves:potential applications in paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1-2):132-142, https://doi.org/10.1016/j.palaeo.2009.06.007.
[17] Feng D, Peng Y B, Bao H M et al. 2016. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane. Geology, 44(12):999-1002, https://doi.org/10.1130/G38233.1.
[18] Feng D, Qiu J W, Hu Y et al. 2018a. Cold seep systems in the South China Sea:an overview. Journal of Asian Earth Sciences, 168:3-16, https://doi.org/10.1016/j.jseaes.2018.09.021.
[19] Feng J X, Yang S X, Sun X M et al. 2018b. Geochemical tracers for methane microleakage activity in the Qiongdongnan Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3):63-75, https://doi.org/10.11885/j.issn.1674-5086.2017.12.01.01. (in Chinese with English abstract)
[20] Freitas P S, Clarke L J, Kennedy H A et al. 2008. Inter- and intra-specimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory- and field-cultured Mytilus edulis and Pecten maximus (bivalvia). Biogeosciences, 5(5):1245-1258, https://doi.org/10.5194/bg-5-1245-2008.
[21] Freitas P S, Clarke L J, Kennedy H et al. 2012. The potential of combined Mg/Ca and δ18O measurements within the shell of the bivalve Pecten maximus to estimate seawater δ18O composition. Chemical Geology, 291:286-293, https://doi.org/10.1016/j.chemgeo.2011.10.023.
[22] Gillikin D P, Dehairs F. 2013. Uranium in aragonitic marine bivalve shells. Palaeogeography, Palaeoclimatology, Palaeoecology, 373:60-65, https://doi.org/10.1016/j.palaeo.2012.02.028.
[23] Gillikin D P, Dehairs F, Lorrain A et al. 2006. Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochimica et Cosmochimica Acta, 70(2):395-407, https://doi.org/10.1016/j.gca.2005.09.015.
[24] Gillikin D P, Lorrain A, Paulet Y M et al. 2008. Synchronous barium peaks in high-resolution profiles of calcite and aragonite marine bivalve shells. Geo-Marine Letters, 28(5):351-358, https://doi.org/10.1007/s00367-008-0111-9.
[25] Guan H X, Feng D, Wu N Y et al. 2016. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea. Organic Geochemistry, 91:109-119, https://doi.org/10.1016/j.orggeochem.2015.11.007.
[26] Hatch M B A, Schellenberg S A, Carter M L. 2013. Ba/Ca variations in the modern intertidal bean clam Donax gouldii:an upwelling proxy? Palaeogeography, Palaeoclimatology, Palaeoecology, 373:98-107, https://doi.org/10.1016/j.palaeo.2012.03.006.
[27] Ip J C H, Xu T, Sun J et al. 2021. Host-endosymbiont genome integration in a deep-sea chemosymbiotic clam. Molecular Biology and Evolution, 38(2):502-518, https://doi.org/10.1093/molbev/msaa241.
[28] Izumida H, Yoshimura T, Suzuki A et al. 2011. Biological and water chemistry controls on Sr/Ca, Ba/Ca, Mg/Ca and δ18O profiles in freshwater pearl mussel Hyriopsis sp. Palaeogeography, Palaeoclimatology, Palaeoecology, 309(3-4):298-308, https://doi.org/10.1016/j.palaeo.2011.06.014.
[29] Lazareth C E, Guzman N, Poitrasson F et al. 2007. Nyctemeral variations of magnesium intake in the calcitic layer of a Chilean mollusk shell (Concholepas concholepas, Gastropoda). Geochimica et Cosmochimica Acta, 71(22):5369-5383, https://doi.org/10.1016/j.gca.2007.07.031.
[30] Liang Q Y, Hu Y, Feng D et al. 2017. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea:constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part I:Oceanographic Research Papers, 124:31-41, https://doi.org/10.1016/j.dsr.2017.04.015.
[31] Lietard C, Pierre C. 2008. High-resolution isotopic records (δ18O and δ13C) and cathodoluminescence study of Lucinid shells from methane seeps of the eastern Mediterranean. Geo-Marine Letters, 28(4):195-203, https://doi.org/10.1007/s00367-008-0100-z.
[32] Lietard C, Pierre C. 2009. Isotopic signatures (δ18O and δ13C) of bivalve shells from cold seeps and hydrothermal vents. Geobios, 42(2):209-219, https://doi.org/10.1016/j.geobios.2008.12.001.
[33] Liu Y S, Hu Z C, Gao S et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2):34-43, https://doi.org/10.1016/j.chemgeo.2008.08.004.
[34] Lorens R B, Bender M L. 1980. The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochimica et Cosmochimica Acta, 44(9):1265-1278, https://doi.org/10.1016/0016-7037(80)90087-3.
[35] Marali S, Schöne B R, Mertz-Kraus R et al. 2017. Ba/Ca ratios in shells of Arctica islandica-potential environmental proxy and crossdating tool. Palaeogeography, Palaeoclimatology, Palaeoecology, 465:347-361, https://doi.org/10.1016/j.palaeo.2015.12.018.
[36] Mouchi V, de Rafélis M, Lartaud F et al. 2013. Chemical labelling of oyster shells used for time-calibrated high-resolution Mg/Ca ratios:a tool for estimation of past seasonal temperature variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 373:66-74, https://doi.org/10.1016/j.palaeo.2012.05.023.
[37] Mucci A. 1987. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochimica et Cosmochimica Acta, 51(7):1977-1984, https://doi.org/10.1016/0016-7037(87)90186-4.
[38] Newton R J, Little C T S, Pape E et al. 2018. Does carbonate-associated sulphate record nutrition in Lucinid and thyasirid bivalve shells from modern hydrocarbon seeps? Journal of Molluscan Studies, 84(2):170-174, https://doi.org/10.1093/mollus/eyy004.
[39] Nix E R, Fisher C R, Vodenichar J et al. 1995. Physiological ecology of a mussel with methanotrophic endosymbionts at three hydrocarbon seep sites in the Gulf of Mexico. Marine Biology, 122(4):605-617, https://doi.org/10.1007/BF00350682.
[40] Paton C, Hellstrom J, Paul B et al. 2011. Iolite:freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12):2508-2518, https://doi.org/10.1039/C1JA10172B.
[41] Peckmann J, Birgel D, Kiel S. 2009. Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology, 37(9):847-850, https://doi.org/10.1130/G25658A.1.
[42] Peckmann J, Thiel V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205(3-4):443-467, https://doi.org/10.1016/j.chemgeo.2003.12.025.
[43] Petersen J M, Dubilier N. 2009. Methanotrophic symbioses in marine invertebrates. Environmental Microbiology Reports, 1(5):319-335, https://doi.org/10.1111/j.1758-2229.2009.00081.x.
[44] Ponnudurai R, Sayavedra L, Kleiner M et al. 2017. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Standards in Genomic Sciences, 12:50, https://doi.org/10.1186/s40793-017-0266-y.
[45] Poulain C, Gillikin D P, Thébault J et al. 2015. An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chemical Geology, 396:42-50, https://doi.org/10.1016/j.chemgeo.2014.12.019.
[46] Putten E V, Dehairs F, Keppens E et al. 2000. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis:environmental and biological controls. Geochimica et Cosmochimica Acta, 64(6):997-1011, https://doi.org/10.1016/S0016-7037(99)00380-4.
[47] Riekenberg P M, Carney R S, Fry B. 2018. Shell carbon isotope indicators of metabolic activity in the deep-sea mussel Bathymodiolus childressi. Deep Sea Research Part I:Oceanographic Research Papers, 134:48-54, https://doi.org/10.1016/j.dsr.2018.02.004.
[48] Riou V, Halary S, Duperron S et al. 2008. Influence of CH4 and H2S availability on symbiont distribution, carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus. Biogeosciences, 5(6):1681-1691, https://doi.org/10.5194/bg-5-1681-2008.
[49] Rosenberg G D, Hughes W W, Parker D L et al. 2001. The geometry of bivalve shell chemistry and mantle metabolism. American Malacological Bulletin, 16(1-2):251-261.
[50] Rosenheim B E, Swart P K, Thorrold S R. 2005. Minor and trace elements in sclerosponge Ceratoporella nicholsoni:biogenic aragonite near the inorganic endmember? Palaeogeography, Palaeoclimatology, Palaeoecology, 228(1-2):109-129, https://doi.org/10.1016/j.palaeo.2005.03.055.
[51] Sarimin A S, Mohamed C A R. 2014. Sr/Ca, Mg/Ca and Ba/Ca ratios in the otolith of sea bass in Peninsular Malaysia as salinity influence markers. Sains Malaysiana, 43(5):757-766, https://doi.org/10.1142/S0218127414500680.
[52] Schöne B R. 2008. The curse of physiology-challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters, 28(5):269-285, https://doi.org/10.1007/s00367-008-0114-6.
[53] Schöne B R, Lega J, Flessa K W et al. 2002. Reconstructing daily temperatures from growth rates of the intertidal bivalve mollusk Chione cortezi (Northern Gulf of California, Mexico). Palaeogeography, Palaeoclimatology, Palaeoecology, 184(1-2):131-146, https://doi.org/10.1016/S0031-0182(02)00252-3.
[54] Schöne B R, Zhang Z J, Jacob D et al. 2010. Effect of organic matrices on the determination of the trace element chemistry (Mg, Sr, Mg/Ca, Sr/Ca) of aragonitic bivalve shells (Arctica islandica) -comparison of ICP-OES and LA-ICP-MS data. Geochemical Journal, 44(1):23-37, https://doi.org/10.2343/geochemj.1.0045.
[55] Schöne B R, Zhang Z J, Radermacher P et al. 2011. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 302(1-2):52-64, https://doi.org/10.1016/j.palaeo.2010.03.016.
[56] Shirai K, Takahata N, Yamamoto H et al. 2008. Novel analytical approach to bivalve shell biogeochemistry:a case study of hydrothermal mussel shell. Geochemical Journal, 42(5):413-420, https://doi.org/10.2343/geochemj.42.413.
[57] Suess E. 2014. Marine cold seeps and their manifestations:geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103(7):1889-1916, https://doi.org/10.1007/s00531-014-1010-0.
[58] Sun Z L, Wu N Y, Cao H et al. 2019. Hydrothermal metal supplies enhance the benthic methane filter in oceans:an example from the Okinawa trough. Chemical Geology, 525:190-209, https://doi.org/10.1016/j.chemgeo.2019.07.025.
[59] Takesue R K, Bacon C R, Thompson J K. 2008. Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells. Geochimica et Cosmochimica Acta, 72(22):5431-5445, https://doi.org/10.1016/j.gca.2008.09.003.
[60] Tamenori Y, Yoshimura T. 2018. Sulfur speciation in growth layers of shell cross section of the long-lived bivalve Margaritifera laevis using synchrotron spectromicroscopy analysis. Geochimica et Cosmochimica Acta, 237:357-369, https://doi.org/10.1016/j.gca.2018.07.002.
[61] Tamenori Y, Yoshimura T, Luan N T et al. 2014. Identification of the chemical form of sulfur compounds in the Japanese pink coral (Corallium elatius) skeleton using µ-XRF/XAS speciation mapping. Journal of Structural Biology, 186(2):214-223, https://doi.org/10.1016/j.jsb.2014.04.001.
[62] Tynan S, Opdyke B N, Walczak M et al. 2017. Assessment of Mg/Ca in Saccostrea glomerata (the Sydney rock oyster) shell as a potential temperature record. Palaeogeography, Palaeoclimatology, Palaeoecology, 484:79-88, https://doi.org/10.1016/j.palaeo.2016.08.009.
[63] Wanamaker A D Jr, Kreutz K J, Wilson T et al. 2008. Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis:implications for paleotemperature reconstructions. Geo-Marine Letters, 28(5):359-368, https://doi.org/10.1007/s00367-008-0112-8.
[64] Wang H, Zhang H, Zhong Z S et al. 2020. Molecular analyses of the gill symbiosis of the bathymodiolin mussel Gigantidas platifrons. iScience, 24(1):101894, https://doi.org/10.1016/j.isci.2020.101894.
[65] Wang X D, Li N, Feng D et al. 2018. Using chemical compositions of sediments to constrain methane seepage dynamics:a case study from Haima cold seeps of the South China Sea. Journal of Asian Earth Sciences, 168:137-144, https://doi.org/10.1016/jjseaes.2018.1L011.
[66] Yang K H, Chu F Y, Zhu J H et al. 2014. Mg/Ca and Sr/Ca ratios of authigenic carbonate minerals and calcareous biogenic shells in the cold-seep carbonates, north of the South China Sea and their environmental implication. Acta Oceanologica Sinica, 36(8):39-48, https://doi.org/10.3969/j.issn.0253-4193.2014.08.005. (in Chinese with English abstract)
[67] Yoshimura T, Tamenori Y, Kawahata H et al. 2014. Fluctuations of sulfate, S-bearing amino acids and magnesium in a giant clam shell. Biogeosciences, 11(14):3881-3886, https://doi.org/10.5194/bg-11-3881-2014.
[68] Yoshimura T, Tamenori Y, Suzuki A et al. 2013. Element profile and chemical environment of sulfur in a giant clam shell:insights from µ-XRF and X-ray absorption near-edge structure. Chemical Geology, 352:170-175, https://doi.org/10.1016/j.chemgeo.2013.05.035.
[69] Yoshinaga M Y, Lazar C S, Elvert M et al. 2015. Possible roles of uncultured archaea in carbon cycling in methane-seep sediments. Geochimica et Cosmochimica Acta, 164:35-52, https://doi.org/10.1016/j.gca.2015.05.003.
[70] Zhang M, Lu H F, Guan H X et al. 2018. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea. Acta Oceanologica Sinica, 37(7):20-27, https://doi.org/10.1007/s13131-018-1241-1.
[71] Zhang X, Du Z F, Zheng R E et al. 2017. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep Sea Research Part I:Oceanographic Research Papers, 123:1-12, https://doi.org/10.1016/j.dsr.2017.02.005.
[72] Zhao L P, Xu H Z, Chen D et al. 2015. Microstructure and spectral analysis of Mytilus coruscus shell. Journal of Zhejiang University (Science Edition), 42(3):339-346, https://doi.org/10.3785/j.issn.1008-9497.2015.03.018. (in Chinese with English abstract)
Copyright © Haiyang Xuebao