Cite this paper:
Qiqin LIU, Rui YANG, Xiaoxiao SUN, Xinqian ZHOU, Haimin CHEN. Biofilm formation under high temperature causes the commensal bacteria Bacillus cereus WPySW2 to shift from friend to foe in Neoporphyra haitanensis in vitro model[J]. Journal of Oceanology and Limnology, 2023, 41(1): 229-240

Biofilm formation under high temperature causes the commensal bacteria Bacillus cereus WPySW2 to shift from friend to foe in Neoporphyra haitanensis in vitro model

Qiqin LIU1,2, Rui YANG1,2, Xiaoxiao SUN1,2, Xinqian ZHOU1,2, Haimin CHEN1,2
1 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China;
2 Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
Abstract:
Although biofilm formation may promote growth, biofilms are not always beneficial to their hosts. The biofilm formation characteristics of Bacillus cereus WPySW2 and its changes at different temperatures were studied. Results show that B. cereus WPySW2 promoted the growth of Neoporphyra haitanensis (an economically cultivated seaweed) at 20 ℃ but accelerated algal rot at 28 ℃. Thicker B. cereus WPySW2 biofilms covered the surface of N. haitanensis thalli at 28 ℃, which hindered material exchange between the algae and surrounding environment, inhibited algal photosynthesis and respiration, and accelerated algal decay. Compared with planktonic bacteria, mature biofilm cells had lower energy consumption and metabolic levels. The biofilm metabolic characteristics of B. cereus WPySW2 changed significantly with temperature. High temperature accelerated biofilm maturation, which made it thicker and more stable, allowing the bacteria to easily adapt to environmental changes and obtain greater benefits from their host. High temperature did not affect the production or increased the abundance of toxic metabolites, indicating that the negative effects of B. cereus WPySW2 on algae were not caused by toxins. This study shows that increased temperature can transform a harmless bacterium into a detrimental one, demonstrating that temperature may change the ecological function of phycospheric bacteria by affecting their morphology and metabolism.
Key words:    bacterial biofilm|Bacillus cereus WPySW2|Pyropia|function transformation|metabolize   
Received: 2021-10-15   Revised:
Tools
PDF (2429 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Qiqin LIU
Articles by Rui YANG
Articles by Xiaoxiao SUN
Articles by Xinqian ZHOU
Articles by Haimin CHEN
References:
Bott T R. 1995. Fouling of Heat Exchangers. Elsevier, Amsterdam, Netherlands. 315p.
Buret A G, Motta J P, Allain T et al. 2019. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? Journal of Biomedical Science, 26(1): 1, https://doi.org/10.1186/s12929-018-0495-4.
Burke C, Thomas T, Lewis M et al. 2011. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. The ISME Journal, 5(4): 590-600, https://doi.org/10.1038/ismej.2010.164.
Coppa G V, Zampini L, Galeazzi T et al. 2006. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatric Research, 59(3): 377-382, https://doi.org/10.1203/01.pdr.0000200805.45593.17.
Costerton J W, Lewandowski Z, Caldwell D E et al. 1995.Microbial Biofilms. Annual Review of Microbiology, 49:711-745, https://doi.org/10.1146/annurev.mi.49.100195. 003431.
Dang H Y, Chen R P, Wang L et al. 2011. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters.Environmental Microbiology, 13(11): 3059-3074, https://doi.org/10.1111/j.1462-2920.2011.02583.x.
Dinges M M, Orwin P M, Schlievert P M. 2000. Exotoxins of Staphylococcus aureus. Clinical Microbiology Reviews, 13(1): 16-34, https://doi.org/10.1128/CMR.13.1.16-34.2000.
Fan T W M. 1996. Metabolite profiling by one- and twodimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28(2):161-219, https://doi.org/10.1016/0079-6565(95)01017-3.
Flemming H C, Wingender J. 2010. The biofilm matrix.Nature Reviews Microbiology, 8(9): 623-633, https://doi.org/10.1038/nrmicro2415.
Fulton C J, Depczynski M, Holmes T H et al. 2014. Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem.Limnology and Oceanography, 59(1): 156-166, https://doi.org/10.4319/lo.2014.59.1.0156.
Gaitán-Espitia J D, Hancock J R, Padilla-Gamiño J L et al. 2014. Interactive effects of elevated temperature and pCO2 on early-life-history stages of the giant kelp Macrocystis pyrifera. Journal of Experimental Marine Biology and Ecology, 457: 51-58, https://doi.org/10.1016/j.jembe.2014.03.018.
Itoh Y, Wang X, Hinnebusch B J et al. 2005. Depolymerization of β-1,6-N-Acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. Journal of Bacteriology, 187(1): 382-387, https://doi.org/10.1128/JB.187.1.382-387.2005.
Khosravi-Darani K, Mokhtari Z B, Amai T et al. 2013. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Applied Microbiology and Biotechnology, 97(4): 1407-1424, https://doi.org/10.1007/s00253-012-4649-0.
Kjelleberg S, Molin S. 2002. Is there a role for quorum sensing signals in bacterial biofilms? Current Opinion in Microbiology, 5(3): 254-258, https://doi.org/10.1016/S1369-5274(02)00325-9.
Lewis K. 2001. Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45(4): 999-1007, https://doi.org/10.1128/AAC.45.4.999-1007.2001.
Lewis K. 2005. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow), 70(2): 267-274, https://doi.org/10.1007/s10541-005-0111-6.
Lin W C, Ren Z M, Mu C K et al. 2020. Effects of elevated pCO2 on the survival and growth of Portunus trituberculatus. Frontiers in Physiology, 11: 750, https://doi.org/10.3389/fphys.2020.00750.
Liu T. 2016. Experimental technology of macroalgae. China Ocean Press, China. p.90-93. (in Chinese)
Patrick F M. 1978. The use of membrane filtration and marine agar 2216E to enumerate marine heterotrophic bacteria. Aquaculture, 13(4): 369-372, https://doi.org/10.1016/0044-8486(78)90186-2.
Pötter M, Steinbüchel A. 2005. Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules, 6(2): 552-560, https://doi.org/10. 1021/bm049401n.
Pysz M A, Conners S B, Montero C I et al. 2004. Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima.Applied and Environmental Microbiology, 70(10):6098-6112, https://doi.org/10.1128/AEM.70.10.6098-6112.2004.
Rao T S. 2010. Comparative effect of temperature on biofilm formation in natural and modified marine environment. Aquatic Ecology, 44(2): 463-478, https://doi.org/10.1007/s10452-009-9304-1.
Rosenberg E, Koren O, Reshef L et al. 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5(5): 355-362, https://doi.org/10.1038/nrmicro1635.
Russell B D, Connell S D, Findlay H S et al. 2013. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 368(1627): 20120438, https://doi.org/10.1098/rstb.2012.0438.
Salaün S, La Barre S, Santos-Goncalvez M D et al. 2012. Influence of exudates of the kelp Laminaria Digitata on biofilm formation of associated and exogenous bacterial epiphytes. Microbial Ecology, 64(2): 359-369, https://doi.org/10.1007/s00248-012-0048-4.
Sato H, Mizutani S I, Tsuge S et al. 1998. Determination of the degree of acetylation of chitin/chitosan by pyrolysis-gas chromatography in the presence of oxalic acid. Analytical Chemistry, 70(1): 7-12, https://doi.org/10.1021/ac9706685.
Seneviratne G, Weerasekara M L M A W, Seneviratne K A C N et al. 2010. Importance of biofilm formation in plant growth promoting rhizobacterial action. In: Maheshwari D K ed. Plant Growth and Health Promoting Bacteria.Springer Berlin Heidelberg, Berlin, Heidelberg. p.81-95.
Sheng L L, Pu M M, Hegde M et al. 2012. Interkingdom adenosine signal reduces Pseudomonas aeruginosa pathogenicity. Environmental Microbiology, 5(4): 560-572, https://doi.org/10.1111/j.1751-7915.2012.00338.x.
Shi C, Xia M J, Li R H et al. 2019. Vibrio alginolyticus infection induces coupled changes of bacterial community and metabolic phenotype in the gut of swimming crab.Aquaculture, 499: 251-259, https://doi.org/10.1016/j.aquaculture.2018.09.031.
Skowron K, Wałecka-Zacharska E, Grudlewska K et al. 2019. Disinfectant susceptibility of biofilm formed by Listeria monocytogenes under selected environmental conditions.Microorganisms, 7(9): 280, https://doi.org/10.3390/microorganisms7090280.
Song D D, Yang R, Ren J R et al. 2014. Effects of environmental pH and Psuedoalteromonas sp. NPyS3 on the Pleurochrysis carterae. Journal of Biology, 31(5): 50-54, https://doi.org/10.3969/j.issn.2095-1736.2014.05.050. (in Chinese with English abstract)
Tait L W. 2014. Impacts of natural and manipulated variations in temperature, pH and light on photosynthetic parameters of coralline-kelp assemblages. Journal of Experimental Marine Biology and Ecology, 454: 1-8, https://doi.org/10.1016/j.jembe.2014.01.016.
Teschler J K, Zamorano-Sánchez D, Utada A S et al. 2015.Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology, 13(5):255-268, https://doi.org/10.1038/nrmicro3433.
Villanueva V D, Font J, Schwartz T et al. 2011. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects.Biofouling, 27(1-2): 59-71, https://doi.org/10.1080/08927 014.2010.538841.
Wahl M, Goecke F, Labes A et al. 2012. The second skin:ecological role of epibiotic biofilms on marine organisms.Frontiers in Microbiology, 3: 292, https://doi.org/10.3389/fmicb.2012.00292.
Watnick P I, Kolter R. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular Microbiology, 34(3): 586-595, https://doi.org/10.1046/j.1365-2958.1999.01624.x.
Watnick P, Kolter R. 2000. Biofilm, city of microbes. Journal of Bacteriology, 182(10): 2675-2679, https://doi.org/10.1128/JB.182.10.2675-2679.2000.
Welin-Neilands J, Svensäter G. 2007. Acid tolerance of biofilm cells of Streptococcus mutans. Applied and Environmental Microbiology, 73(17): 5633-5638, https://doi.org/10.1128/AEM.01049-07.
Whitman W B, Coleman D C, Wiebe W J. 1998. Prokaryotes:the unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95(3): 6578-6583, https://doi.org/10.1073/pnas.95.12.6578.
Xiong Y Q, Yang R, Yang H T et al. 2018. Effects of phycosphere Bacillus sp. WPySW2 on physiology of Pyropia haitanensis. Journal of Biology, 35(1): 37-41, https://doi.org/10.3969/j.issn.2095-1736.2018.01.037. (in Chinese with English abstract)
Yang H T, Xiong Y Q, Yang R. 2018. Effects of Bacillus sp. on Pyropia haitanensis at high temperature. Journal of Fisheries of China, 42(7): 1009-1018. (in Chinese with English abstract)
Yang R, Fang W Y, Shan Y Y et al. 2008. Genetic diversity of epiphytic bacteria in Porphyra yezoensis. Acta Oceanologica Sinica, 30(4): 161-168, https://doi.org/10.3321/j.issn:0253-4193.2008.04.020. (in Chinese with English abstract)
Yang R, Liu W, Zhang X L et al. 2013. Sequences of Mn-sod gene from Pyropia haitanensis (Bangiales, Rhodophyta) and its expression under heat shock. Botanica Marina, 56(3): 249-259, https://doi.org/10.1515/bot-2012-0178.
Ye Y F, Zhang L M, Hao F H et al. 2012. Global metabolomic responses of Escherichia coli to heat stress. Journal of Proteome Research, 11(4): 2559-2566, https://doi.org/10.1021/pr3000128.
Zaura E, ten Cate J. 2004. Dental plaque as a biofilm: a pilot study of the effects of nutrients on plaque pH and dentin demineralization. Caries Research, 38(S1): 9-15, https://doi.org/10.1159/000074357.
Zhou J M, Yang R, Fang W Y et al. 2012. Study on the axenic culture and application of Porphyra haitanensis thallus. Journal of Biology, 29(3): 83-87, https://doi.org/10.3969/j.issn.2095-1736.2012.03.083. (in Chinese with English abstract)
Copyright © Haiyang Xuebao