Cite this paper:
Guojing LI, Changming DONG, Jiayi PAN, Adam T. DEVLIN, Dongxiao WANG. Influence of the upper mixed layer depth on Langmuir turbulence characteristics[J]. Journal of Oceanology and Limnology, 2023, 41(1): 17-37

Influence of the upper mixed layer depth on Langmuir turbulence characteristics

Guojing LI1,4, Changming DONG2, Jiayi PAN3, Adam T. DEVLIN3, Dongxiao WANG1
1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 Nanjing University of Information Science and Technology, Nanjing 210044, China;
3 Institute of Space and Earth Information Science, the Chinese University of Hong Kong, Hong Kong 999077, China;
4 Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 510301, China
Abstract:
The upper mixed layer depth (h) has a significant seasonal variation in the real ocean and the low-order statistics of Langmuir turbulence are dramatically influenced by the upper mixed layer depth. To explore the influence of the upper mixed layer depth on Langmuir turbulence under the condition of the wind and wave equilibrium, the changes of Langmuir turbulence characteristics with the idealized variation of the upper mixed layer depth from very shallow (h=5 m) to deep enough (h=40 m) are studied using a non-hydrostatic large eddy simulation model. The simulation results show that there is a direct entrainment depth induced by Langmuir turbulence (hLT) within the thermocline. The normalized depth-averaged vertical velocity variance is smaller and larger than the downwind velocity variance for the ratio of the upper mixed layer to a direct entrainment depth induced by Langmuir turbulence h/hLT<1 and h/hLT> 1, respectively, indicating that turbulence characteristics have the essential change (i.e., depth-averaged vertical velocity variance (DAVV)DADV for Langmuir turbulence) between h/hLT<1 and h/hLT>1. The rate of change of the normalized depth-averaged low-order statistics for h/hLT<1 is much larger than that for h/hLT>1. The reason is that the downward pressure perturbation induced by Langmuir cells is strongly inhibited by the upward reactive force of the strong stratified thermocline for h/hLT<1 and the effect of upward reactive force on the downward pressure perturbation becomes weak for h/hLT>1. Hence, the upper mixed layer depth has significant influences on Langmuir turbulence characteristics.
Key words:    the upper mixed layer depth|Langmuir turbulence|turbulent characteristics|large eddy simulation   
Received: 2021-04-21   Revised:
Tools
PDF (2545 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Guojing LI
Articles by Changming DONG
Articles by Jiayi PAN
Articles by Adam T. DEVLIN
Articles by Dongxiao WANG
References:
Basovich A. 2014. The effect of contaminant drag reduction on the onset and evolution of Langmuir circulations. Journal of Physical Oceanography, 44(10): 2739-2752.
Belcher S E, Grant A L M, Hanley K E et al. 2012. A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophysical Research Letters, 39(18):L18605, https://doi.org/10.1029/2012GL052932.
Craik A D D. 1977. The generation of Langmuir circulations by an instability mechanism. Journal of Fluid Mechanics, 81(2): 209-223.
D’Asaro E A. 2014. Turbulence in the upper-ocean mixed layer. Annual Review of Marine Science, 6: 101-115.
De Boyer Montégut C, Madec G, Fischer A S et al. 2004.Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109(C12): C12003, https://doi.org/10.1029/2004JC002378.
Fan Y L, Griffies S M. 2014. Impacts of parameterized Langmuir turbulence and nonbreaking wave mixing in global climate simulations. Journal of Climate, 27(12):4752-4775.
Furuichi N, Hibiya T. 2015. Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model. Journal of Geophysical Research: Oceans, 120(3):2350-2369, https://doi.org/10.1002/2014JC010665.
Gargett A E, Grosch C E. 2014. Turbulence process domination under the combined forcings of wind stress, the Langmuir vortex force, and surface cooling. Journal of Physical Oceanography, 44(1): 44-67.
Grant A L M, Belcher S E. 2009. Characteristics of Langmuir Turbulence in the ocean mixed layer. Journal of Physical Oceanography, 39(8): 1871-1887.
Harcourt R R, D’Asaro E A. 2008. Large-eddy simulation of Langmuir turbulence in pure wind seas. Journal of Physical Oceanography, 38(7): 1542-1562.
Harcourt R R. 2013. A second-moment closure model of Langmuir turbulence. Journal of Physical Oceanography, 43(4): 673-697.
Harcourt R R. 2015. An improved second-moment closure model of Langmuir turbulence. Journal of Physical Oceanography, 45(1): 84-103.
Hoecker-Martínez M S, Smyth W D, Skyllingstad E D. 2016. Oceanic turbulent energy budget using large-eddy simulation of a wind event during DYNAMO. Journal of Physical Oceanography, 46(3): 827-840.
Kenyon K E. 1969. Stokes drift for random gravity waves.Journal of Geophysical Research, 74(28): 6991-6994.
Kukulka T, Plueddemann A J, Sullivan P P. 2013. Inhibited upper ocean restratification in nonequilibrium swell conditions. Geophysical Research Letters, 40(14): 3672-3676.
Kukulka T, Plueddemann A J, Trowbridge J H et al. 2010.Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: a case study. Journal of Physical Oceanography, 40(11): 2381-2400.
Langmuir I. 1938. Surface motion of water induced by wind.Science, 87(2250): 119-123.
Leibovich S. 1977. Convective instability of stably stratified water in the ocean. Journal of Fluid Mechanics, 82(3):561-581.
Leibovich S. 1980. On wave-current interaction theories of Langmuir circulations. Journal of Fluid Mechanics, 99(4): 715-724.
Li M, Garrett C, Skyllingstad E. 2005. A regime diagram for classifying turbulent large eddies in the upper ocean.Deep Sea Research Part I: Oceanographic Research Papers, 52(2): 259-278.
Li M, Garrett C. 1997. Mixed layer deepening due to Langmuir circulation. Journal of Physical Oceanography, 27(1):121-132.
Li M, Vagle S, Farmer D M. 2009. Large eddy simulations of upper-ocean response to a midlatitude storm and comparison with observations. Journal of Physical Oceanography, 39(9): 2295-2309.
Li Q, Fox-Kemper B. 2017. Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. Journal of Physical Oceanography, 47(12): 2983-2886.
Liu W T, Katsaros K B, Businger J A. 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface.Journal of the Atmospheric Sciences, 36(9): 1722-1735.
McWilliams J C, Huckle E, Liang J H et al. 2012. The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. Journal of Physical Oceanography, 42(11): 1793-1816.
McWilliams J C, Huckle E, Liang J H et al. 2014. Langmuir turbulence in Swell. Journal of Physical Oceanography, 44(3): 870-890.
McWilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation. Journal of Physical Oceanography, 29(10):2523-2540.
McWilliams J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334:1-30.
McWilliams J C, Sullivan P P. 2000. Vertical mixing by Langmuir circulations. Spill Science & Technology Bulletin, 6(3-4): 225-237.
Min H S, Noh Y. 2004. Influence of the surface heating on Langmuir circulation. Journal of Physical Oceanography, 34(12): 2630-2641.
Moeng C H, Wyngaard J C. 1988. Spectral analysis of largeeddy simulations of the convective boundary layer.Journal of the Atmospheric Sciences, 45(23): 3573-3587.
Moeng C H. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 41(13): 2052-2062.
Noh Y, Choi Y. 2018. Comments on “Langmuir turbulence and surface heating in the ocean surface boundary layer”.Journal of Physical Oceanography, 48(2): 455-458.
Noh Y, Goh G, Raasch S et al. 2009. Formation of a diurnal thermocline in the Ocean Mixed layer simulated by LES.Journal of Physical Oceanography, 39(5): 1244-1257.
Noh Y, Goh G, Raasch S. 2011. Influence of Langmuir circulation on the deepening of the wind-mixed layer.Journal of Physical Oceanography, 41(3): 472-484.
Noh Y, Min H S, Raasch S. 2004. Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir Circulation. Journal of Physical Oceanography, 34(4): 720-735.
Noh Y, Ok H, Lee E et al. 2016. Parameterization of Langmuir circulation in the ocean mixed layer model using LES and its application to the OGCM. Journal of Physical Oceanography, 46(1): 57-78.
Pearson B C, Grant A L M, Polton J A et al. 2015. Langmuir turbulence and surface heating in the ocean surface boundary layer. Journal of Physical Oceanography, 45(12): 2897-2911.
Polton J A, Belcher S E. 2007. Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. Journal of Geophysical Research, 112(C9): C09020, https://doi.org/10.1029/2007JC004205.
Polton J A, Smith J A, MacKinnon J A et al. 2008. Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer.Geophysical Research Letters, 35(13): L13602, https://doi.org/10.1029/2008GL033856.
Skyllingstad E D, Denbo D W. 1995. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. Journal of Geophysical Research, 100(C5): 8501-8522.
Skyllingstad E D, Smyth W D, Moum J N et al. 1999.Upper-ocean turbulence during a westerly wind burst:a comparison of large-eddy simulation results and microstructure measurements. Journal of Physical Oceanography, 29(1): 5-28.
Skyllingstad E D. 2000. Scales of Langmuir circulation generated using a large-eddy simulation model. Spill Science & Technology Bulletin, 6(3-4): 239-246.
SMIFSmyth R L, Akan C, Tejada-Martinez A et al. 2017. Quantifying phytoplankton productivity and photoinhibition in the Ross Sea polynya with large eddy simulation of Langmuir circulation. Journal of Geophysical Research: Oceans, 122(7): 5545-5565, https://doi.org/10.1002/2017JC012747.
Smyth W D, Skyllingstad E D, Crawford G B et al. 2002.Nonlocal fluxes and stokes drift effects in the K-profile parameterization. Ocean Dynamics, 52(3): 104-115.
Sullivan P P, McWilliams J C, Melville W K. 2007. Surface gravity wave effects in the oceanic boundary layer: largeeddy simulation with vortex force and stochastic breakers.Journal of Fluid Mechanics, 593: 405-452.
Sullivan P P, McWilliams J C, Moeng C H. 1994. A subgridscale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorology, 71(3): 247-276.
Sullivan P P, McWilliams J C, Moeng C H. 1996. A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorology, 80(1-2): 167-202.
Sullivan P P, McWilliams J C. 2018. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. Journal of Fluid Mechanics, 837: 341-380.
Sullivan P P, McWilliams J C. 2019. Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. Journal of Fluid Mechanics, 879: 512-533.
Sullivan P P, Patton E G. 2011. The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. Journal of the Atmospheric Sciences, 68(10): 2395-2415.
Sullivan P P, Romero L, McWilliams J C et al. 2012. Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. Journal of Physical Oceanography, 42(11): 1959-1980.
Sutherland G, Christensen K H, Ward B. 2014. Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer. Journal of Geophysical Research: Oceans, 119(3): 1899-1910, https://doi.org/10.1002/2013JC009537.
Suzuki N, Fox-Kemper B. 2016. Understanding Stokes forces in the wave-averaged equations. Journal of Geophysical Research: Oceans, 121(5): 3579-3596.
Thorpe S A. 2004. Langmuir circulation. Annual Review of Fluid Mechanics, 36: 55-79.
Tseng R S, D’Asaro E A. 2004. Measurements of turbulent vertical kinetic energy in the ocean mixed layer from Lagrangian floats. Journal of Physical Oceanography, 34(9): 1984-1990.
Van Roekel L P, Fox-Kemper B, Sullivan P P et al. 2012.The form and orientation of Langmuir cells for misaligned winds and waves. Journal of Geophysical Research: Oceans, 117(C5): C05001, https://doi.org/1029/2011JC007516.
Wang D, McWilliams J C, Large W G. 1998. Large-eddy simulation of the diurnal cycle of deep equatorial turbulence. Journal of Physical Oceanography, 28(1):129-148.
Weller R A, Price J F. 1988. Langmuir circulation within the oceanic mixed layer. Deep Sea Research Part A.Oceanographic Research Papers, 35(5): 711-731, 733-737, 739-741.
Wijesekera H W, Wang D W, Teague W J et al. 2013. Surface wave effects on high-frequency currents over a shelf edge bank. Journal of Physical Oceanography, 43(8): 1627-1647.
Xuan A Q, Deng B Q, Shen L. 2019. Study of wave effect on vorticity in Langmuir turbulence using wavephase-resolved large-eddy simulation. Journal of Fluid Mechanics, 875: 173-224.
Xuan A Q, Deng B Q, Shen L. 2020. Numerical study of effect of wave phase on Reynolds stresses and turbulent kinetic energy in Langmuir turbulence. Journal of Fluid Mechanics, 904: A17.
Yang D, Chamecki M, Meneveau C. 2014. Inhibition of oil plume dilution in Langmuir ocean circulation.Geophysical Research Letters, 41(5): 1632-1638.
Copyright © Haiyang Xuebao