Cite this paper:
Jing YANG, Xiongjie ZHANG, Junping LÜ, Qi LIU, Fangru NAN, Xudong LIU, Shulian XIE, Jia FENG. Seasonal co-occurrence patterns of bacteria and eukaryotic phytoplankton and the ecological response in urban aquatic ecosystem[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1508-1529

Seasonal co-occurrence patterns of bacteria and eukaryotic phytoplankton and the ecological response in urban aquatic ecosystem

Jing YANG, Xiongjie ZHANG, Junping LÜ, Qi LIU, Fangru NAN, Xudong LIU, Shulian XIE, Jia FENG
School of Life Science, Shanxi University, Taiyuan 030006, China
Abstract:
Microorganisms play a key role in aquatic ecosystems. Recent studies show that keystone taxa in microbial community could change the community structure and function. However, most previous studies focus on abundant taxa but neglected low abundant ones. To clarify the seasonal variation of bacterial and microalgal communities and understand their synergistic adaptation to different environmental factors, we studied the bacterial and eukaryotic phytoplankton communities in Fenhe River that runs through Taiyuan City, central China, and their seasonal co-occurrence patterns using 16S and 18S rDNA sequencing. Results indicate that positive interaction of eukaryotic phytoplankton network was more active than negative one except winter, indicating that the cooperation (symbiotic phenomenon in which phytoplankton are interdependent and mutually beneficial) among them could improve the adaption of microbial community to the local environmental changes and maintain the stability of microbial network. The main genera that identified as keystone taxa in bacterial network were Salinivibrio and Sphingopyxis of Proteobacteria and they could respond to the variation of nitrite and make use of it, while those that identified as keystone taxa in eukaryotic phytoplankton network were Pseudoschroederia and Nannochloris, and they were more susceptible to nitrate and phosphate. Mychonastes and Cryptomonas were closely related to water temperature. However, the loss of the co-occurrence by environmental factor changes affected the stability of network structure. This study provided a reference for analyzing relationship between bacteria and eukaryotic phytoplankton and revealing potential importance of keystone taxa in similar ecological domains in carbon, nitrogen, and phosphorus dynamics.
Key words:    seasonal co-occurrence|bacteria and eukaryotic phytoplankton communities|keystone taxa|ecological effect|urban aquatic ecosystem   
Received: 2021-07-05   Revised:
Tools
PDF (1653 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Jing YANG
Articles by Xiongjie ZHANG
Articles by Junping LÜ
Articles by Qi LIU
Articles by Fangru NAN
Articles by Xudong LIU
Articles by Shulian XIE
Articles by Jia FENG
References:
Andersson A F, Riemann L, Bertilsson S.2010.Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities.The ISME Journal, 4(2):171-181, https://doi.org/doi.org/10.1038/ismej.2009.108.
Azam F, Fenchel T, Field J G, Gray J S, Meyer-Reil L A, Thingstad F.1983.The ecological role of water-column microbes in the sea.Marine Ecology Progress Series, 10:257-263, https://doi.org/10.3354/meps010257.
Behringer G, Ochsenkühn M A, Fei C, Fanning J, Koester J A, Amin S A.2018.Bacterial communities of diatoms display strong conservation across strains and time.Frontiers in Microbiology, 9:659, https://doi.org/10.3389/fmicb.2018.00659.
Bolyen E, Rideout J R, Dillon M R, Bokulich N A, Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F, Bai Y, Bisanz J E, Bittinger K, Brejnrod A, Brislawn C J, Brown C T, Callahan B J, CaraballoRodríguez A M, Chase J, Cope E K, Da Silva R, Diener C, Dorrestein P C, Douglas G M, Durall D M, Duvallet C, Edwardson C F, Ernst M, Estaki M, Fouquier J, Gauglitz J M, Gibbons S M, Gibson D L, Gonzalez A, Gorlick K, Guo J R, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley G A, Janssen S, Jarmusch A K, Jiang L J, Kaehler B D, Kang K B, Keefe C R, Keim P, Kelley S T, Knights D, Koester I, Kosciolek T, Kreps J, Langille M G I, Lee J, Ley R, Liu Y X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin B D, McDonald D, McIver L J, Melnik A V, Metcalf J L, Morgan S C, Morton J T, Naimey A T, Navas-Molina J A, Nothias L F, Orchanian S B, Pearson T, Peoples S L, Petras D, Preuss M L, Pruesse E, Rasmussen L B, Rivers A, Robeson M S, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song S J, Spear J R, Swafford A D, Thompson L R, Torres P J, Trinh P, Tripathi A, Turnbaugh P J, Ul-Hasan S, Van Der hooft J J J, Vargas F, Vázquez-Baeza Y, Vogtmann E, Von Hippel M, Walters W, Wan Y H, Wang M X, Warren J, Weber K C, Williamson C H D, Willis A D, Xu Z Z, Zaneveld J R, Zhang Y L, Zhu Q Y, Knight R, Caporaso J G.2019.Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.Nature Biotechnology, 37(8):852-857, https://doi.org/10.1038/s41587-019-0209-9.
Bunse C, Bertos-Fortis M, Sassenhagen I, Sildever S, Sjöqvist C, Godhe A, Gross S, Kremp A, Lips I, Lundholm N, Rengefors K, Sefbom J, Pinhassi J, Legrand C.2016.Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom.Frontiers in Microbiology, 7:517, https://doi.org/10.3389/fmicb.2016.00517.
Calderer M, Martí V, De Pablo J, Guivernau M, PrenafetaBoldú F X, Viñas M.2014.Effects of enhanced denitrification on hydrodynamics and microbial community structure in a soil column system.Chemosphere, 111:112-119, https://doi.org/10.1016/j.chemosphere.2014.03.033.
Callahan B J, McMurdie P J, Holmes S P.2017.Exact sequence variants should replace operational taxonomic units in marker-gene data analysis.The ISME Journal, 11(12):2639-2643, https://doi.org/10.1038/ismej.2017.119.
Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P.2016.DADA2:high-resolution sample inference from Illumina amplicon data.Nature Methods, 13(7):581-583, https://doi.org/10.1038/nmeth.3869.
Callieri C, Cronberg G, Stockner J G.2012.Freshwater picocyanobacteria:single cells, microcolonies and colonial forms.In:Whitton B ed.Ecology of cyanobacteria II.Their Diversity in Space and Time.2nd edn.Springer, Dordrecht, Netherlands.p.229-269, https://doi.org/10.1007/978-94-007-3855-3_8.
Capo E, Debroas D, Arnaud F, Perga M E, Chardon C, Domaizon I.2017.Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming.Environmental Microbiology, 19(7):2873-2892, https://doi.org/10.1111/1462-2920.13815.
Deng Y, Jiang Y H, Yang Y F, He Z L, Luo F, Zhou J Z.2012.Molecular ecological network analyses.BMC Bioinformatics, 13(1):113, https://doi.org/10.1186/1471-2105-13-113.
Drury B, Rosi-Marshall E, Kelly J J.2013.Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers.Applied and Environmental Microbiology, 79(6):1897-1905, https://doi.org/10.1128/AEM.03527-12.
Du S C, Dini-Andreote F, Zhang N, Liang C L, Yao Z Y, Zhang H J, Zhang D M.2020.Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem.Applied and Environmental Microbiology, 86(13):e00322-20, https://doi.org/10.1128/AEM.00322-20.
Duffy J E, Cardinale B J, France K E, McIntyre P B, Thébault E, Loreau M.2007.The functional role of biodiversity in ecosystems:incorporating trophic complexity.Ecology Letters, 10(6):522-538, https://doi.org/10.1111/j.1461-0248.2007.01037.x.
Dumbrell A J, Nelson M, Helgason T, Dytham C, Fitter A H.2010.Relative roles of niche and neutral processes in structuring a soil microbial community.The ISME Journal, 4(3):337-345, https://doi.org/10.1038/ismej.2009.122.
Falkowski P G, Fenchel T, Delong E F.2008.The microbial engines that drive Earth's biogeochemical cycles.Science, 320(5879):1034-1039, https://doi.org/10.1126/science.1153213.
Fan K K, Weisenhorn P, Gilbert J A, Chu H Y.2018.Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil.Soil Biology and Biochemistry, 125:251-260, https://doi.org/10.1016/j.soilbio.2018.07.022.
Ger K A, Urrutia-Cordero P, Frost P C, Hansson L A, Sarnelle O, Wilson A E, Lürling M.2016.The interaction between cyanobacteria and zooplankton in a more eutrophic world.Harmful Algae, 54:128-144, https://doi.org/10.1016/j.hal.2015.12.005.
Grossart H P, Levold F, Allgaier M, Simon M, Brinkhoff T.2005.Marine diatom species harbour distinct bacterial communities.Environmental Microbiology, 7(6):860-873, https://doi.org/10.1111/j.1462-2920.2005.00759.x.
Gücker B, Brauns M, Solimini A G, Voss M, Walz N, Pusch M T.2011.Urban stressors alter the trophic basis of secondary production in an agricultural stream.Canadian Journal of Fisheries and Aquatic Sciences, 68(1):74-88, https://doi.org/10.1139/F10-126.
Guimerà R, Nunes Amaral L A.2005.Functional cartography of complex metabolic networks.Nature, 433(7028):895-900, https://doi.org/10.1038/nature03288.
Herlemann D P, Labrenz M, Jürgens K, Bertilsson S, Waniek J J, Andersson A F.2011.Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea.The ISME Journal, 5(10):1571-1579, https://doi.org/10.1038/ismej.2011.41.
Heymann S.2014.Gephi.In Alhajj R, Rokne J eds.Encyclopedia of Social Network Analysis and Mining.Springer, New York, 14p, https://doi.org/10.1007/978-1-4614-6170-8_299.
Horner-Devine M C, Bohannan B J M.2006.Phylogenetic clustering and overdispersion in bacterial communities.Ecology,87(sp7):S100-S108, https://doi.org/10.1890/0012-9658(2006)87[100:PCAOIB]2.0.CO;2.
Hu A Y, Ju F, Hou L Y, Li J W, Yang X Y, Wang H J, Mulla S I, Sun Q, Bürgmann H, Yu C P.2017.Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community.Environmental Microbiology, 19(12):4993-5009, https://doi.org/10.1111/1462-2920.13942.
Hunt D E, Ward C S.2015.A network-based approach to disturbance transmission through microbial interactions.Frontiers in Microbiology, 6:1182, https://doi.org/10.3389/fmicb.2015.01182.
Jiao C C, Zhao D Y, Zeng J, Guo L, Yu Z B.2020.Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes.Science of the Total Environment, 740:140010, https://doi.org/10.1016/j.scitotenv.2020.140010.
Jolley E T, Jones A K.1977.The interaction between Navicula muralis grunow and an associated species of Flavobacterium.British Phycological Journal, 12(4):315-328, https://doi.org/10.1080/00071617700650341.
Jones A C, Liao T S V, Najar F Z, Roe B A, Hambright K D, Caron D A.2013.Seasonality and disturbance:annual pattern and response of the bacterial and microbial eukaryotic assemblages in a freshwater ecosystem.Environmental Microbiology, 15(9):2557-2572, https://doi.org/10.1111/1462-2920.12151.
Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig M C, Rivett D W, Salles J F, Van Der heijden M G A, Youssef N H, Zhang X W, Wei Z, Hol W H G.2017.Where less may be more:how the rare biosphere pulls ecosystems strings.The ISME Journal, 11(4):853-862, https://doi.org/10.1038/ismej.2016.174.
Ju F, Xia Y, Guo F, Wang Z P, Zhang T.2014.Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants.Environmental Microbiology, 16(8):2421-2432, https://doi.org/10.1111/1462-2920.12355.
Kang Y H, Kim B R, Choi H J, Seo J G, Kim B H, Han M S.2007.Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii (Bacillariophyceae).Journal of Applied Microbiology, 103(5):1983-1994, https://doi.org/10.1111/j.1365-2672.2007.03439.x.
Konopka A, Lindemann S, Fredrickson J.2015.Dynamics in microbial communities:unraveling mechanisms to identify principles.The ISME Journal, 9(7):1488-1495, https://doi.org/10.1038/ismej.2014.251.
Krienitz L, Bock C, Dadheech P K, Pröschold T.2011.Taxonomic reassessment of the genus Mychonastes(Chlorophyceae, Chlorophyta) including the description of eight new species.Phycologia, 50(1):89-106, https://doi.org/10.2216/10-15.1.
Li Y H, Hu M M, Shen Y W, Liu Y D, Li D H, Li G B.2013.Mychonastes, a new recorded genus of freshwater Chlorophyceae isolated from a Chinese lake.Acta Hydrobiologica Sinica, 37(3):473-480, https://doi.org/10.7541/2013.46.(in Chinese with English abstract)
Lieberman E, Hauert C, Nowak M A.2005.Evolutionary dynamics on graphs.Nature, 433(7023):312-316, https://doi.org/10.1038/nature03204.
Liu C Q, Shi X L, Fan F, Wu F, Lei J.2019.N:P ratio influences the competition of Microcystis with its picophytoplankton counterparts, Mychonastes and Synechococcus, under nutrient enrichment conditions.Journal of Freshwater Ecology, 34(1):445-454, https://doi.org/10.1080/027050 60.2019.1622604.
Ma B, Wang H Z, Dsouza M, Lou J, He Y, Dai Z M, Brookes P C, Xu J M, Gilbert J A.2016.Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China.The ISME Journal, 10(8):1891-1901, https://doi.org/10.1038/ismej.2015.261.
Mallon C A, Poly F, Le Roux X, Marring I, van Elsas J D, Salles J F.2015.Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities.Ecology, 96(4):915-926, https://doi.org/10.1890/14-1001.1.
Martín González A M, Dalsgaard B, Olesen J M.2010.Centrality measures and the importance of generalist species in pollination networks.Ecological Complexity, 7(1):36-43, https://doi.org/10.1016/j.ecocom.2009.03.008.
Mayfield M M, Levine J M.2010.Opposing effects of competitive exclusion on the phylogenetic structure of communities.Ecology Letters, 13(9):1085-1093, https://doi.org/10.1111/j.1461-0248.2010.01509.x.
Mikhailov I S, Zakharova Y R, Bukin Y S, Galachyants Y P, Petrova D P, Sakirko M V, Likhoshway Y V.2019.Cooccurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom.Microbial Ecology, 77(1):96-109, https://doi.org/10.1007/s00248-018-1212-2.
Morando M, Capone D G.2016.Intraclade heterogeneity in nitrogen utilization by marine prokaryotes revealed using stable isotope probing coupled with tag sequencing (TagSIP).Frontiers in Microbiology, 7:1932, https://doi.org/10.3389/fmicb.2016.01932.
Nagumo T.2003.Taxonomic studies of the subgenus Amphora Cleve of the genus Amphora (Bacillariophyceae) in Japan.Bibliotheca Diatomologica, 49:1-265.
Nyirabuhoro P, Liu M, Xiao P, Liu L M, Yu Z, Wang L N, Yang J.2020.Seasonal variability of conditionally rare taxa in the water column bacterioplankton community of subtropical reservoirs in China.Microbial Ecology, 80(1):14-26, https://doi.org/10.1007/s00248-019-01458-9.
Paine R T.1969.The Pisaster-Tegula Interaction:prey patches, predator food preference, and intertidal community structure.Ecology, 50(6):950-961, https://doi.org/10.2307/1936888.
Park M, Ryu S H, Vu T H T, Ro H S, Yun P Y, Jeon C O.2007.Flavobacterium defluvii sp.nov., isolated from activated sludge.International Journal of Systematic and Evolutionary Microbiology, 57(2):233-237, https://doi.org/10.1099/ijs.0.64669-0.
Paver S F, Hayek K R, Gano K A, Fagen J R, Brown C T, Davis-Richardson A G, Crabb D B, Rosario-Passapera R, Giongo A, Triplett E W, Kent A D.2013.Interactions between specific phytoplankton and bacteria affect lake bacterial community succession.Environmental Microbiology, 15(9):2489-2504, https://doi.org/doi.org/10.1111/14622920.12131.
Pedrós-Alió C.2012.The rare bacterial biosphere.Annual Review of Marine Science, 4:449-466, https://doi.org/10.1146/annurev-marine-120710-100948.
Ruiz-González C, Niño-García J P, Del Giorgio P A.2015.Terrestrial origin of bacterial communities in complex boreal freshwater networks.Ecology Letters, 18(11):1198-1206, https://doi.org/10.1111/ele.12499.
Sarker S K, Sonet S S, Haque M M, Sharmin M.2013.Disentangling the role of soil in structuring tropical tree communities at Tarap Hill Reserve of Bangladesh.Ecological Research, 28(4):553-565, https://doi.org/10.1007/s11284-013-1045-x.
Shade A, Gilbert J A.2015.Temporal patterns of rarity provide a more complete view of microbial diversity.Trends in Microbiology, 23(6):335-340, https://doi.org/10.1016/j.tim.2015.01.007.
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T.2003.Cytoscape:a software environment for integrated models of biomolecular interaction networks.Genome Research, 13(11):2498-2504, https://doi.org/10.1101/gr.1239303.
Shen Q H, Jiang J W, Chen L P, Cheng L H, Xu X H, Chen H L.2015.Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production.Bioresource Technology, 190:257-263, https://doi.org/10.1016/j.biortech.2015.04.053.
Shi S J, Nuccio E E, Shi Z J, He Z L, Zhou J Z, Firestone M K.2016.The interconnected rhizosphere:high network complexity dominates rhizosphere assemblages.Ecology Letters, 19(8):926-936, https://doi.org/10.1111/ele.12630.
Šimek K, Horňák K, Jezbera J, Maš í n M, Nedoma J, Gasol J M, Schauer M.2005.Influence of top-down and bottomup manipulations on the R-BT065 subcluster of β-Proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir.Applied and Environmental Microbiology, 71(5):2381-2390, https://doi.org/10.1128/AEM.71.5.2381-2390.2005.
Stanish L F, O'Neill S P, Gonzalez A, Legg T M, Knelman J, McKnight D M, Spaulding S, Nemergut D R.2013.Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams.Environmental Microbiology, 15(4):1115-1131, https://doi.org/10.1111/j.1462-2920.2012.02872.x.
Steele J A, Countway P D, Xia L, Vigil P D, Beman J M, Kim D Y, Chow C E T, Sachdeva R, Jones A C, Schwalbach M S, Rose J M, Hewson I, Patel A, Sun F Z, Caron D A, Fuhrman J A.2011.Marine bacterial, archaeal and protistan association networks reveal ecological linkages.The ISME Journal, 5(9):1414-1425, https://doi.org/10.1038/ismej.2011.24.
Sun Z, Li G P, Wang C W, Jing Y H, Zhu Y P, Zhang S M, Liu Y.2014.Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir.Scientific Reports, 4(1):6966, https://doi.org/10.1038/srep06966.
Toyama H, Bessho K, Huang L L, Hirota S K, Kano Y, Mase K, Sato T, Naiki A, Li J H, Shimatani Y, Yahara T.2020.The effects of water pollution on the phylogenetic community structure of aquatic plants in the East Tiaoxi River, China.Freshwater Biology, 65(4):632-645, https://doi.org/10.1111/fwb.13451.
Vick-Majors T J, Priscu J C, Amaral-Zettler L A.2014.Modular community structure suggests metabolic plasticity during the transition to polar night in icecovered Antarctic lakes.The ISME Journal, 8(4):778-789, https://doi.org/10.1038/ismej.2013.190.
Wang Y S, Lou Z P, Sun C C, Sun S.2008.Ecological environment changes in Daya Bay, China, from 1982 to 2004.Marine Pollution Bulletin, 56(11):1871-1879, https://doi.org/10.1016/j.marpolbul.2008.07.017.
Wang Y, Ye F, Wu S J, Wu J P, Yan J, Xu K Q, Hong Y G.2020.Biogeographic pattern of bacterioplanktonic community and potential function in the Yangtze River:roles of abundant and rare taxa.Science of the Total Environment, 747:141335, https://doi.org/doi.org/10.1016/j.scitotenv.2020.141335.
Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia L C, Xu Z Z, Ursell L, Alm E J, Birmingham A, Cram J A, Fuhrman J A, Raes J, Sun F Z, Zhou J Z, Knight R.2016.Correlation detection strategies in microbial data sets vary widely in sensitivity and precision.The ISME Journal, 10(7):1669-1681, https://doi.org/10.1038/ismej.2015.235.
Williams P J le B, Ducklow H W.2019.The microbial loop concept:a history, 1930-1974.Journal of Marine Research, 77(Suppl.1):23-81, https://doi.org/10.1357/002224019828474359.
Worden A Z, Follows M J, Giovannoni S J, Wilken S, Zimmerman A E, Keeling P J.2015.Rethinking the marine carbon cycle:factoring in the multifarious lifestyles of microbes.Science, 347(6223):1257594, https://doi.org/10.1126/science.1257594.
Wu W X, Logares R, Huang B Q, Hsieh C H.2017.Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean.Environmental Microbiology, 19(1):287-300, https://doi.org/10.1111/1462-2920.13606.
Xue Y Y, Chen H H, Yang J R, Liu M, Huang B Q, Yang J.2018.Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom.The ISME Journal, 12(9):2263-2277, https://doi.org/10.1038/s41396-018-0159-0.
Yang C Y, Wang Q, Simon P N, Liu J Y, Liu L C, Dai X Z, Zhang X H, Kuang J L, Igarashi Y, Pan X J, Luo F.2017.Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake.Frontiers in Microbiology, 8:1202, https://doi.org/10.3389/fmicb.2017.01202.
Zhang L, Fang W K, Li X C, Lu W X, Li J.2020.Strong linkages between dissolved organic matter and the aquatic bacterial community in an urban river.Water Research, 184:116089, https://doi.org/10.1016/j.watres.2020.116089.
Zhang W J, Pan Y B, Yang J, Chen H H, Holohan B, Vaudrey J, Lin S J, McManus G B.2018.The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation.Environmental Microbiology, 20(2):462-476.https://doi.org/10.1111/1462-2920.13916.
Zhou J Z, Deng Y, Luo F, He Z L, Tu Q C, Zhi X Y.2010.Functional molecular ecological networks.mBio, 1(4):e00169-10, https://doi.org/10.1128/mBio.00169-10.
Zhou L, Zhou Y Q, Yao X L, Cai J, Liu X, Tang X M, Zhang Y L, Jang K S, Jeppesen E.2020.Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients.Environment International, 134:105330, https://doi.org/doi.org/10.1016/j.envint.2019.105330.
Zhu C M, Zhang J Y, Nawaz M Z, Mahboob S, Al-Ghanim K A, Khan I A, Lu Z H, Chen T.2019.Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater lake, Lake Taihu.Science of the Total Environment, 669:29-40, https://doi.org/10.1016/j.scitotenv.2019.03.087.
Zhu J M, Hong Y G, Zada S, Hu Z, Wang H.2018.Spatial variability and co-acclimation of phytoplankton and bacterioplankton communities in the Pearl River Estuary, China.Frontiers in Microbiology, 9:2503, https://doi.org/10.3389/fmicb.2018.02503.
Ziegler M, Eguíluz V M, Duarte C M, Voolstra C R.2018.Rare symbionts may contribute to the resilience of coralalgal assemblages.The ISME Journal, 12(1):161-172, https://doi.org/10.1038/ismej.2017.151.
Copyright © Haiyang Xuebao