Cite this paper:
Baoxiao QU, Jinming SONG, Xuegang LI, Huamao YUAN, Kun ZHANG, Suqing XU. Global air-sea CO2 exchange flux since 1980s: results from CMIP6 Earth System Models[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1417-1436

Global air-sea CO2 exchange flux since 1980s: results from CMIP6 Earth System Models

Baoxiao QU1,2,3,4, Jinming SONG1,2,3,4, Xuegang LI1,2,3,4, Huamao YUAN1,2,3,4, Kun ZHANG2,3,4,5, Suqing XU6
1 Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Marine Ecology and Environmental Sciences Laboratory, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
5 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
6 Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
Abstract:
The ocean could profoundly modulate the ever-increasing atmospheric CO2 by air-sea CO2 exchange process, which is also able to cause significant changes of physical and biogeochemical properties in return. In this study, we assessed the long-term average and spatial-temporal variability of global air-sea CO2 exchange flux (FCO2) since 1980s basing on the results of 18 Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth System Models (ESMs). Our findings indicate that the CMIP6 ESMs simulated global CO2 sink in recent three decades ranges from 1.80 to 2.24 Pg C/a, which is coincidence with the results of cotemporaneous observations. What's more, the CMIP6 ESMs consistently show that the global oceanic CO2 sink has gradually intensified since 1980s as well as the observations. This study confirms the simulated FCO2 could reach agreements with the observations in the aspect of primary climatological characteristics, however, the simulation skills of CIMP6 ESMs in diverse open-sea biomes are unevenness. None of the 18 CMIP6 ESMs could reproduce the observed FCO2 increasement in the central-eastern tropical Pacific and the midlatitude Southern Ocean. Deficiencies of some CMIP6 ESMs in reproducing the atmospheric pressure systems of the Southern Hemisphere and the El Niño-Southern Oscillation (ENSO) mode of the tropical Pacific are probably the major causes.
Key words:    air-sea CO2 flux|Coupled Model Intercomparison Project Phase 6 (CMIP6)|Earth System Model (ESM)|long-term average|spatial-temporal variability   
Received: 2021-04-08   Revised:
Tools
PDF (9763 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Baoxiao QU
Articles by Jinming SONG
Articles by Xuegang LI
Articles by Huamao YUAN
Articles by Kun ZHANG
Articles by Suqing XU
References:
Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, Jones C, Jung M, Myneni R, Zhu Z.2013.Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models.Journal of Climate, 26(18):6801-6843, https://doi.org/10.1175/JCLI-D-12-00417.1.
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni R B, Piao S, Thornton P.2013.
Carbon and other biogeochemical cycles.In:Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M eds.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, MA, USA.p.465-570.
Doney S C, Tilbrook B, Roy S, Metzl N, Le Quéré C, Hood M, Feely R A, Bakker D.2009.Surface-ocean CO2 variability and vulnerability.Deep Sea Research Part II:Topical Studies in Oceanography, 56(8-10):504-511, https://doi.org/10.1016/j.dsr2.2008.12.016.
Dong F, Li Y C, Wang B, Huang W Y, Shi Y Y, Dong W H.2016.Global air-sea CO2 flux in 22 CMIP5 models:multiyear mean and interannual variability.Journal of Climate, 29(7):2407-2431, https://doi.org/10.1175/JCLI-D-14-00788.1.
Dong F, Li Y C, Wang B, Huang W Y, Shi Y Y, Dong W H.2017.Assessment of responses of tropical Pacific air-sea CO2 flux to ENSO in 14 CMIP5 Models.Journal of Climate, 30(21):8595-8613, https://doi.org/10.1175/JCLI-D-16-0543.1.
Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E.2016.Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.Geoscientific Model Development, 9(5):1937-1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fay A R, McKinley G A.2014.Global open-ocean biomes:mean and temporal variability.Earth System Science Data, 6(2):273-284.
Feely R A, Boutin J, Cosca C E, Dandonneau Y, Etcheto J, Inoue H Y, Ishii M, Le Quéré C, Mackey D J, McPhaden M, Metzl N, Poisson A, Wanninkhof R.2002.Seasonal and interannual variability of CO2 in the equatorial Pacific.Deep Sea Research Part II:Topical Studies in Oceanography, 49(13-14):2443-2469, https://doi.org/10.1016/S0967-0645(02)00044-9.
Feely R A, Wanninkhof R, Takahashi T, Tans P.1999.Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation.Nature, 398(6728):597-601, https://doi.org/10.1038/19273.
Fletcher S E M, Gruber N, Jacobson A R, Doney S C, Dutkiewicz S, Gerber M, Follows M, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller S A, Sarmiento J L.2006.Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean.GlobalBiogeochemical Cycles, 20(2):GB2002, https://doi.org/10.1029/2005GB002530.
Frölicher T L, Sarmiento J L, Paynter D J, Dunne J P, Krasting J P, Winton M.2015.Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 Models.Journal of Climate, 28(2):862-886, https://doi.org/10.1175/JCLI-D-14-00117.1.
Gruber N, Landschützer P, Lovenduski N S.2019.The Variable Southern Ocean Carbon Sink.Annual Review of Marine Science, 11:159-186.
Jin C X, Zhou T J, Chen X L.2019.Can CMIP5 earth system models reproduce the interannual variability of air-sea CO2 fluxes over the Tropical Pacific Ocean? Journal of Climate, 32(8):2261-2275, https://doi.org/10.1175/JCLI-D-18-0131.1.
Jones C D, Collins M, Cox P M, Spall S A.2001.The carbon cycle response to ENSO:a coupled climate-carbon cycle model study.Journal of Climate, 14(21):4113-4129, https://doi.org/10.1175/1520-0442(2001)014<4113:TCC RTE>2.0.CO;2.
Key R M, Kozyr A, Sabine C L, Lee K, Wanninkhof R, Bullister J L, Feely R A, Millero F J, Mordy C, Peng T H.2004.A global ocean carbon climatology:results from Global Data Analysis Project (GLODAP).Global Biogeochemical Cycles, 18(4):GB4031, https://doi.org/10.1029/2004GB002247.
Landschützer P, Gruber N, Bakker D C E, Schuster U.2014.Recent variability of the global ocean carbon sink.Global Biogeochemical Cycles, 28(9):927-949, https://doi.org/10.1002/2014GB004853.
Landschützer P, Gruber N, Bakker D C E.2016.Decadal variations and trends of the global ocean carbon sink.Global Biogeochemical Cycles, 30(10):1396-1417, https://doi.org/10.1002/2015GB005359.
Landschützer P, Gruber N, Bakker D C E.2017.An observation-based global monthly gridded sea surface pCO2 product from 1982 onward and its monthly climatology (NCEI Accession 0160558).Version 4.4.NOAA National Centers for Environmental Information.Dataset.https://doi.org/10.7289/V5Z899N6.Accessed on 2019-03-27.
Landschützer P, Gruber N, Haumann F A, Rödenbeck C, Bakker D C E, van Heuven S, Hoppema M, Metzl N, Sweeney C, Takahashi T, Tilbrook B, Wanninkhof R.2015.The reinvigoration of the Southern Ocean carbon sink.Science, 349(6253):1221-1224, https://doi.org/10.1126/science.aab2620.
Le Quéré C, Orr J C, Monfray P, Aumont O, Madec G.2000.Interannual variability of the oceanic sink of CO2 from 1979 through 1997.Global Biogeochemical Cycles, 14(4):1247-1265, https://doi.org/10.1029/1999GB900049.
Lenton A, Matear R J.2007.Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake.Global Biogeochemical Cycles, 21(2):GB2016, https://doi.org/10.1029/2006GB002714.
Li Y C, Xu Y F.2012.Influences of two air-sea exchange schemes on the distribution and storage of bomb radiocarbon in the Pacific Ocean.Marine Chemistry, 130-131:40-48, https://doi.org/10.1016/J.MARCHEM.2011.12.006.
Li Y C, Xu Y F.2013.Interannual variations of the air-sea carbon dioxide exchange in the different regions of the Pacific Ocean.Acta Oceanologica Sinica, 32(3):71-79, https://doi.org/10.1007/s13131-013-0291-7.
Luo X F, Wei H, Liu Z, Zhao L.2015.Seasonal variability of air-sea CO2 fluxes in the Yellow and East China Seas:a case study of continental shelf sea carbon cycle model.Continental Shelf Research, 107:69-78, https://doi.org/10.1016/j.csr.2015.07.009.
McKinley G A, Rödenbeck C, Gloor M, Houweling S, Heimann M.2004.Pacific dominance to global air-sea CO2 flux variability:a novel atmospheric inversion agrees with ocean models.Geophysical Research Letters, 31(22):L22308, https://doi.org/10.1029/2004GL021069.
Mongwe N P, Vichi M, Monteiro P M S.2018.The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean:diagnosing anomalies in CMIP5 Earth system models.Biogeosciences, 15(9):2851-2872, https://doi.org/10.5194/bg-15-2851-2018.
Resplandy L, Séférian R, Bopp L.2015.Natural variability of CO2 and O2 fluxes:what can we learn from centuries-long climate models simulations? Journal of Geophysical Research:Oceans, 120(1):384-404, https://doi.org/10.1002/2014JC010463.
Rödenbeck C, Bakker D C E, Gruber N, Iida Y, Jacobson A R, Jones S, Landschützer P, Metzl N, Nakaoka S, Olsen A, Park G H, Peylin P, Rodgers K B, Sasse T P, Schuster U, Shutler J D, Valsala V, Wanninkhof R, Zeng J.2015.Databased estimates of the ocean carbon sink variability-first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM).Biogeosciences, 12(23):7251-7278, https://doi.org/10.5194/bg-12-7251-2015.
Rödenbeck C, Bakker D C E, Metzl N, Olsen A, Sabine C, Cassar N, Reum F, Keeling R F, Heimann M.2014.Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme.Biogeosciences, 11(17):4599-4613, https://doi.org/10.5194/bg-11-4599-2014.
Sweeney C, Gloor E, Jacobson A R, Key R M, McKinley G, Sarmiento J L, Wanninkhof R.2007.Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements.Global Biogeochemical Cycles, 21(2):GB2015, https://doi.org/10.1029/2006GB002784.
Takahashi T, Sutherland S C, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely R A, Sabine C,Olafsson J, Nojiri Y.2002.Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects.Deep Sea Research Part II:Topical Studies in Oceanography, 49(9-10):1601-1622, https://doi.org/10.1016/S0967-0645(02)00003-6.
Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson T S, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C S, Delille B, Bates N R, de Baar H J W.2009.Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans.Deep Sea Research Part II:Topical Studies in Oceanography, 56(8-10):554-577, https://doi.org/10.1016/j.dsr2.2008.12.009.
Taylor K E.2001.Summarizing multiple aspects of model performance in a single diagram.Journal of Geophysical Research:Atmospheres, 106(D7):7183-7192, https://doi.org/10.1029/2000JD900719.
Valsala V, Maksyutov S.2010.Simulation and assimilation of global ocean pCO2 and air-sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model.Tellus B:Chemical and Physical Meteorology, 62(5):821-840, https://doi.org/10.1111/j.1600-0889.2010.00495.x.
Wang X J, Murtugudde R, Hackert E, Wang J, Beauchamp J.2015.Seasonal to decadal variations of sea surface pCO2 and sea-air CO2 flux in the equatorial oceans over 1984-2013:a basin-scale comparison of the Pacific and Atlantic Oceans.Global Biogeochemical Cycles, 29(5):597-609, https://doi.org/10.1002/2014GB005031.
Zeng J, Nojiri Y, Landschützer P, Telszewski M, Nakaoka S.2014.A global surface ocean fCO2 climatology based on a Feed-Forward Neural Network.Journal of Atmospheric and Oceanic Technology, 31(8):1838-1849, https://doi.org/10.1175/JTECH-D-13-00137.1.
Copyright © Haiyang Xuebao