Cite this paper:
Jia YOU, Zhenhua XU, Robin ROBERTSON, Qun LI, Baoshu YIN. Geographical inhomogeneity and temporal variability of mixing property and driving mechanism in the Arctic Ocean[J]. Journal of Oceanology and Limnology, 2022, 40(3): 846-869

Geographical inhomogeneity and temporal variability of mixing property and driving mechanism in the Arctic Ocean

Jia YOU1,2,3,4, Zhenhua XU1,2,3,4,5, Robin ROBERTSON6, Qun LI7, Baoshu YIN1,2,3,4,5
1 CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
5 CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
6 China-Asean College of Marine Science, Xiamen University Malaysia, Sepang 43900, Malaysia;
7 MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200120, China
Abstract:
Upper ocean mixing plays a key role in the atmosphere-ocean heat transfer and sea ice extent and thickness via modulating the upper ocean temperatures in the Arctic Ocean. Observations of diffusivities in the Arctic that directly indicate the ocean mixing properties are sparse. Therefore, the spatiotemporal pattern and magnitude of diapycnal diffusivities and kinetic energy dissipation rates in the upper Arctic Ocean are important for atmosphere-ocean heat transfers and sea ice changes. These were first estimated from the Ice-Tethered Profilers dataset (2005-2019) using a strain-based fine-scale parameterization. The resultant mixing properties showed significant geographical inhomogeneity and temporal variability. Diapycnal diffusivities and dissipation rates in the Atlantic sector of the Arctic Ocean were stronger than those on the Pacific side. Mixing in the Atlantic sector increased significantly during the observation period; whereas in the Pacific sector, it weakened before 2011 and then strengthened. Potential impact factors include wind, sea ice, near inertial waves, and stratification, while their relative contributions vary between the two sectors of the Arctic Ocean. In the Atlantic sector, turbulent mixing dominated, while in the Pacific sector, turbulent mixing was inhibited by strong stratification prior to 2011, and is able to overcome the stratification gradually after 2014. The vertical turbulent heat flux constantly increased in the Atlantic sector year by year, while it decreased in the Pacific sector post 2010. The estimated heat flux variability induced by enhanced turbulent mixing is expected to continue to diminish sea ice in the near future.
Key words:    mixing|the Arctic Ocean|near-inertial waves|stratification|heat flux   
Received: 2021-01-28   Revised:
Tools
PDF (11100 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Jia YOU
Articles by Zhenhua XU
Articles by Robin ROBERTSON
Articles by Qun LI
Articles by Baoshu YIN
References:
Aagaard K, Coachman L K, Carmack E.1981.On the halocline of the Arctic Ocean.Deep Sea Research Part A.Oceanographic Research Papers, 28(6):529-545, https://doi.org/10.1016/0198-0149(81)90115-1.
Armitage T W K, Manucharyan G E, Petty A A, Kwok R, Thompson A F.2020.Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss.Nature Communications, 11(1):761, https://doi.org/10.1038/s41467-020-14449-z.
Bebieva Y, Timmermans M L.2017.The relationship between double-diffusive intrusions and staircases in the Arctic Ocean.Journal of Physical Oceanography, 47(4):867-878, https://doi.org/10.1175/JPO-D-16-0265.1.
Beer E, Eisenman I, Wagner T J W.2020.Polar amplification due to enhanced heat flux across the halocline.Geophysical Research Letters, 47(4):e2019GL086706, https://doi.org/10.1029/2019GL086706.
Bi H B, Liang Y, Wang Y H, Liang X, Zhang Z H, Du T Q, Yu Q L, Huang J, Kong M, Huang H J.2020.Arctic multiyear sea ice variability observed from satellites:a review.Journal of Oceanology and Limnology, 38(4):962-984, https://doi.org/10.1007/s00343-020-0093-7.
Bouffard D, Boegman L.2013.A diapycnal diffusivity model for stratified environmental flows.Dynamics of Atmospheres and Oceans, 61-62:14-34, https://doi.org/10.1016/j.dynatmoce.2013.02.002.
Boog C, Dijkstra H, Pietrzak J, Katsman, C.2021.Doublediffusive mixing makes a small contribution to the global ocean circulation.Communications Earth & Environment, 2:46, https://doi.org/10.1038/s43247-021-00113-x.
Carmack E, Polyakov I, Padman L, Fer I, Hunke E, Hutchings J, Jackson J, Kelley D, Kwok R, Layton C, Melling H, Perovich D, Persson O, Ruddick B, Timmermans M L, Toole J, Ross T, Vavrus S, Winsor P.2015.Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic.Bulletin of the American Meteorological Society, 96(12):2079-2105, https://doi.org/10.1175/BAMS-D-13-00177.1.
Chang H, Xu Z H, Yin B S, Hou Y J, Liu Y H, Li D L, Wang Y, Cao S S, Liu A K.2019.Generation and propagation of M2 internal tides modulated by the Kuroshio northeast of Taiwan.Journal of Geophysical Research:Oceans, 124(4):2728-2749, https://doi.org/10.1029/2018JC014228.
Chanona M, Waterman S, Gratton Y.2018.Variability of internal wave-driven mixing and stratification in Canadian Arctic shelf and shelf-slope waters.Journal of Geophysical Research:Oceans, 123(12):9178-9195, https://doi.org/10.1029/2018JC014342.
Cole S T, Timmermans M L, Toole J M, Krishfield R A, Thwaites F T.2014.Ekman veering, internal waves, and turbulence observed under Arctic sea ice.Journal of Physical Oceanography, 44(5):1306-1328, https://doi.org/10.1175/JPO-D-12-0191.1.
Comiso J C.2002.A rapidly declining perennial sea ice cover in the Arctic.Geophysical Research Letters, 29(20):1956, https://doi.org/10.1029/2002GL015650.
Dosser H V, Chanona M, Waterman S, Shibley N C, Timmermans M L.2021.Changes in internal wave-driven mixing across the Arctic Ocean:finescale estimates from an 18-year panArctic record.Geophysical Research Letters, 48(8):e2020GL091747, https://doi.org/10.1029/2020GL091747.
Dosser H V, Rainville L.2016.Dynamics of the changing near-inertial internal wave field in the Arctic Ocean.Journal of Physical Oceanography, 46(2):395-415, https://doi.org/10.1175/JPO-D-15-0056.1.
Dosser H V, Rainville L, Toole J M.2014.Near-inertial internal wave field in the Canada basin from ice-tethered profilers.Journal of Physical Oceanography, 44(2):413-426, https://doi.org/10.1175/JPO-D-13-0117.1.
Falahat S, Nycander J.2015.On the generation of bottomtrapped internal tides.Journal of Physical Oceanography, 45(2):526-545, https://doi.org/10.1175/JPO-D-14-0081.1.
Fer I.2009.Weak vertical diffusion allows maintenance of cold halocline in the central Arctic.Atmospheric and Oceanic Science Letters, 2(3):148-152, https://doi.org/10.1080/16742834.2009.11446789.
Fer I.2014.Near-inertial mixing in the central Arctic Ocean.Journal of Physical Oceanography, 44(8):2031-2049, https://doi.org/10.1175/JPO-D-13-0133.1.
Fer I, Koenig Z, Kozlov I E, Ostrowski M, Rippeth T P, Padman L, Bosse A, Kolås E.2020.Tidally forced lee waves drive turbulent mixing along the Arctic Ocean margins.Geophysical Research Letters, 47(16):e2020GL088083, https://doi.org/10.1029/2020GL088083.
Fer I, Skogseth R, Geyer F.2010.Internal waves and mixing in the marginal ice zone near the Yermak Plateau.Journal of Physical Oceanography, 40(7):1613-1630, https://doi.org/10.1175/2010JPO4371.1.
Fine E C, Alford M H, MacKinnon J A, Mickett J B.2021.Microstructure mixing observations and finescale parameterizations in the Beaufort Sea.Journal of Physical Oceanography, 51(1):19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
Garrett C, Munk W.1979.Internal waves in the ocean.Annual Review of Fluid Mechanics, 11:339-369, https://doi.org/10.1146/annurev.fl.11.010179.002011.
Gregg M C, Kunze E.1991.Shear and strain in Santa Monica Basin.J.Geophys.Res., 96(C9):16709-16719, https://doi.org/10.1029/91JC01385.
Gregg M C, D'Asaro E A, Riley J J, Kunze E.2018.Mixing efficiency in the ocean.Annual Review of Marine Science, 10:443-473, https://doi.org/10.1146/annurevmarine-121916-063643.
Guo Z, Cao A Z, Lü X Q.2018.Seasonal variation and modal content of internal tides in the northern South China Sea.Journal of Oceanology and Limnology, 36(3):651-662, https://doi.org/10.1007/s00343-018-6352-1.
Guthrie J D, Morison J H, Fer I.2013.Revisiting internal waves and mixing in the Arctic Ocean.Journal of Geophysical Research:Oceans, 118(8):3966-3977, https://doi.org/10.1002/jgrc.20294.
Hakkinen S, Proshutinsky A, Ashik I.2008.Sea ice drift in the Arctic since the 1950s.Geophysical Research Letters, 35(19):L19704, https://doi.org/10.1029/2008GL034791.
Halle C, Pinkel R.2003.Internal wave variability in the Beaufort Sea during the winter of 1993/1994.Journal of Geophysical Research, 108(C7):3210, https://doi.org/10.1029/2000JC000703.
Hebert D, Moum J N.1994.Decay of a near-inertial wave.Journal of Physical Oceanography, 24(11):2334-2351, https://doi.org/10.1175/1520-0485(1994)024<2334:DOA NIW>2.0.CO;2.
Hughes K G, Klymak J M.2019.Tidal conversion and dissipation at steep topography in a channel poleward of the critical latitude.Journal of Physical Oceanography, 49(5):1269-1291, https://doi.org/10.1175/JPO-D-18-0132.1.
Ivey G N, Winters K B, Koseff J R.2008.Density stratification, turbulence, but how much mixing? Annual Review of Fluid Mechanics, 40:169-184, https://doi.org/10.1146/annurev.fluid.39.050905.110314.
Jackson J M, Williams W J, Carmack E C.2012.Winter seaice melt in the Canada Basin, Arctic Ocean.Geophysical Research Letters, 39(3):L03603, https://doi.org/10.1029/2011GL050219.
Kawaguchi Y, Nishino S, Inoue J, Maeno K, Takeda H, Oshima K.2016.Enhanced diapycnal mixing due to near-inertial internal waves propagating through an anticyclonic eddy in the ice-free Chukchi Plateau.Journal of Physical Oceanography, 46(8):2457-2481, https://doi.org/10.1175/JPO-D-15-0150.1.
Krishfield R, Toole J, Proshutinsky A, Timmermans M L.2008.Automated ice-tethered profilers for seawater observations under pack ice in all seasons.Journal of Atmospheric and Oceanic Technology, 25(11):2091-2105, https://doi.org/10.1175/2008JTECHO587.1.
Kunze E.2017.Internal-wave-driven mixing:global geography and budgets.Journal of Physical Oceanography, 47(6):1325-1345, https://doi.org/10.1175/JPO-D-16-0141.1.
Kunze E, Firing E, Hummon J M, Chereskin T K, Thurnherr A M.2006.Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles.Journal of Physical Oceanography, 36(8):1553-1576, https://doi.org/10.1175/JPO2926.1.
Lei R B, Tian-Kunze X S, Leppäranta M, Wang J, Kaleschke L, Zhang Z H.2016.Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009.Journal of Geophysical Research:Oceans, 121(8):5470-5486, https://doi.org/10.1002/2016JC011831.
Lenn Y D, Rippeth T P, Old C P, Bacon S, Polyakov I, Ivanov V, Hölemann J.2011.Intermittent intense turbulent mixing under ice in the Laptev Sea continental shelf.Journal of Physical Oceanography, 41(3):531-547, https://doi.org/10.1175/2010JPO4425.1.
Lenn Y D, Wiles P J, Torres-Valdes S, Abrahamsen E P, Rippeth T P, Simpson J H, Bacon S, Laxon S W, Polyakov I, Ivanov V, Kirillov S.2009.Vertical mixing at intermediate depths in the Arctic boundary current.Geophysical Research Letters, 36(5):L05601, https://doi.org/10.1029/2008GL036792.
Lincoln B J, Rippeth T P, Lenn Y D, Timmermans M L, Williams W J, Bacon S.2016.Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean.Geophysical Research Letters, 43(18):9749-9756, https://doi.org/10.1002/2016GL070454.
Lindsay R, Schweiger A.2015.Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations.The Cryosphere, 9(1):269-283, https://doi.org/10.5194/tc-9-269-2015.
Lique C, Guthrie J D, Steele M, Proshutinsky A, Morison J H, Krishfield R.2014.Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments.Journal of Geophysical Research:Oceans, 119(1):496-508, https://doi.org/10.1002/2013JC009346.
Liu Z, Lian Q, Zhang F, Wang L, Li M, Bai X, Wang J N, Wang F.2017.Weak thermocline mixing in the North Pacific low-latitude western boundary current system.Geophysical Research Letters, 44:10530-10539, https://doi.org/10.1002/2017GL075210.
Manucharyan G E, Spall M A, Thompson A F.2016.A theory of the wind-driven Beaufort Gyre variability.Journal of Physical Oceanography, 46(11):3263-3278, https://doi.org/10.1175/JPO-D-16-0091.1.
McLaughlin F A, Carmack E C, Macdonald R W, Melling H, Swift J H, Wheeler P A, Sherr B F, Sherr E B.2004.The joint roles of pacific and Atlantic-origin waters in the Canada Basin, 1997-1998.Deep Sea Research Part I:Oceanographic Research Papers, 51(1):107-128, https://doi.org/10.1016/j.dsr.2003.09.010.
McLaughlin F A, Carmack E C, Williams W J, Zimmermann S, Shimada K, Itoh M.2009.Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993-2007.Journal of Geophysical Research:Oceans, 114(C1):C00A12, https://doi.org/10.1029/2008JC005001.
Merrifield M A, Pinkel R.1996.Inertial currents in the Beaufort Sea:observations of response to wind and shear.Journal of Geophysical Research:Oceans, 101(C3):6577-6590, https://doi.org/10.1029/95JC03625.
Osborn T R.1980.Estimates of the local rate of vertical diffusion from dissipation measurements.Journal of Physical Oceanography, 10(1):83-89, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
Pemberton P, Nilsson J, Hieronymus M, Meier H E M.2015.Arctic Ocean water mass transformation in S-T coordinates.Journal of Physical Oceanography, 45(4):1025-1050, https://doi.org/10.1175/JPO-D-14-0197.1.
Polyakov I V, Padman L, Lenn Y D, Pnyushkov A, Rember R, Ivanov V V.2019.Eastern Arctic Ocean diapycnal heat fluxes through large double-diffusive steps.Journal of Physical Oceanography, 49(1):227-246, https://doi.org/10.1175/JPO-D-18-0080.1.
Polyakov I V, Pnyushkov A V, Alkire M B, Ashik I M, Baumann T M, Carmack E C, Goszczko I, Guthrie J, Ivanov V V, Kanzow T, Krishfield R, Kwok R, Sundfjord A, Morison J, Rember, R, Yulin A.2017.Greater role for Atlantic inflows on sea-ice loss in the Eurasian basin of the Arctic Ocean.Science, 356(6335):285-291, https://doi.org/10.1126/science.aai8204.
Polyakov I V, Rippeth T P, Fer I, Alkire M B, Baumann T M, Carmack E C, Ingvaldsen R, Ivanov V V, Janout M, Lind S, Padman L, Pnyushkov A V, Rember R.2020a.Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean.Journal of Climate, 33(18):8107-8123, https://doi.org/10.1175/JCLI-D-19-0976.1.
Polyakov I V, Rippeth T P, Fer I, Baumann T M, Carmack E C, Ivanov V V, Janout M, Padman L, Pnyushkov A V, Rember R.2020b.Intensification of near-surface currents and shear in the eastern Arctic Ocean.Geophysical Research Letters, 47(16):e2020GL089469, https://doi.org/10.1029/2020GL089469.
Rainville L, Winsor P.2008.Mixing across the Arctic Ocean:microstructure observations during the Beringia 2005 expedition.Geophysical Research Letters, 35(8):L08606, https://doi.org/10.1029/2008GL033532.
Rippeth T P, Lincoln B J, Lenn Y D, Green J A M, Sundfjord A, Bacon S.2015.Tide-mediated warming of arctic halocline by Atlantic heat fluxes over rough topography.Nature Geoscience, 8(3):191-194, https://doi.org/10.1038/ngeo2350.
Rippeth T P, Vlasenko V, Stashchuk N, Scannell B D, Green J A M, Lincoln B J, Bacon S.2017.Tidal conversion and mixing poleward of the critical latitude (an Arctic case study).Geophysical Research Letters, 44(24):12349-12357, https://doi.org/10.1002/2017GL075310.
Robertson R, Padman L, Levine M D.1995.Fine structure, microstructure, and vertical mixing processes in the upper ocean in the western Weddell Sea.Journal of Geophysical Research:Oceans, 100(C9):18517-18535, http://doi.org/10.1029/95JC01742.
Rothrock D A, Percival D B, Wensnahan M.2008.The decline in arctic sea-ice thickness:separating the spatial, annual, and interannual variability in a quarter century of submarine data.Journal of Geophysical Research:Oceans, 113(C5):C05003, https://doi.org/10.1029/2007JC004252.
Ruddick B, Gargett A E.2003.Oceanic double-infusion:introduction.Progress in Oceanography, 56(3-4):381-393, https://doi.org/10.1016/S0079-6611(03)00024-7.
Rudels B, Anderson L G, Jones E P.1996.Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean.Journal of Geophysical Research:Oceans, 101(C4):8807-8821, https://doi.org/10.1029/96JC00143.
Rudels B, Quadfasel D.1991.Convection and deep water formation in the arctic ocean-Greenland Sea system.Journal of Marine Systems, 2(3-4):435-450, https://doi.org/10.1016/0924-7963(91)90045-V.
Schulz K, Büttner S, Rogge A, Janout M, Hölemann J, Rippeth T P.2021a.Turbulent mixing and the formation of an intermediate nepheloid layer above the Siberian continental shelf break.Geophysical Research Letters, 48(9):e2021GL092988, https://doi.org/10.1029/2021GL092988.
Schulz K, Janout M, Lenn Y D, Ruiz-Castillo E, Polyakov I, Mohrholz V, Tippenhauer S, Reeve K A, Hölemann J, Rabe B, Vredenborg M.2021b.On the along-slope heat loss of the boundary current in the Eastern Arctic Ocean.Journal of Geophysical Research:Oceans, 126(2):e2020JC016375, https://doi.org/10.1029/2020JC016375.
Shibley N C, Timmermans M L, Carpenter J R, Toole J M.2017.Spatial variability of the Arctic Ocean's doublediffusive staircase.Journal of Geophysical Research:Oceans, 122(2):980-994, https://doi.org/10.1002/2016JC012419.
Shimada K, Itoh M, Nishino S, Mclaughlin F, Carmack E, Proshutinsky A.2005.Halocline structure in the Canada basin of the Arctic Ocean.Geophysical Research Letters, 32(3):L03605, https://doi.org/10.1029/2004GL021358.
Smith M, Stammerjohn S, Persson O, Rainville L, Liu G Q, Perrie W, Robertson R, Jackson J, Thomson J.2018.Episodic reversal of autumn ice advance caused by release of ocean heat in the Beaufort Sea.Journal of Geophysical Research:Oceans, 123(5):3164-3185, https://doi.org/10.1002/2018JC013764.
Steele M, Morison J H, Curtin T B.1995.Halocline water formation in the Barents Sea.Journal of Geophysical Research:Oceans, 100(C1):881-894, https://doi.org/10.1029/94JC02310.
Stroeve J C, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier W N.2012.Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations.Geophysical Research Letters, 39(16):L16502, https://doi.org/10.1029/2012GL052676.
Sundfjord A, Fer I, Kasajima Y, Svendsen H.2007.Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea.Journal of Geophysical Research:Oceans, 112(C5):C05008, https://doi.org/10.1029/2006JC003524.
Takahashi A, Hibiya T.2019.Assessment of finescale parameterizations of deep ocean mixing in the presence of geostrophic current shear:results of microstructure measurements in the Antarctic Circumpolar Current region.Journal of Geophysical Research:Oceans, 124(1):135-153, https://doi.org/10.1029/2018JC014030.
Timmermans M L, Toole J, Krishfield R.2018.Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins.Science Advances, 4(8):eaat6773, https://doi.org/10.1126/sciadv.aat6773.
Timmermans M L, Toole J, Krishfield R, Winsor P.2008.Icetethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline.Journal of Geophysical Research:Oceans, 113(C1):C00A02, https://doi.org/10.1029/2008JC004829.
Toole J M, Krishfield R A, Timmermans M L, Proshutinsky A.2011.The ice-tethered profiler:Argo of the Arctic.Oceanography, 24(3):126-135, https://doi.org/10.5670/oceanog.2011.64.
Toole J M, Timmerman M L, Perovich D K, Krishfield R A, Proshutinsky A, Richter-Menge J A.2010.Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin.Journal of Geophysical Research:Oceans, 115(C10):C10018, https://doi.org/10.1029/2009JC005660.
Wang J, Mizobata K, Bai X Z, Hu H G, Jin M B, Yu Y L, Ikeda M, Johnson W, Perie W, Fujisaki A.2014.A modeling study of coastal circulation and landfast ice in the nearshore Beaufort and Chukchi seas using CIOM.Journal of Geophysical Research:Oceans, 119(6):3285-3312, https://doi.org/10.1002/2013JC009258.
Wang Y, Xu Z H, Yin B S, Hou Y J, Chang H.2018.Longrange radiation and interference pattern of multisource M2 internal tides in the Philippine Sea.Journal of Geophysical Research:Oceans, 123(8):5091-5112, https://doi.org/10.1029/2018JC013910.
Wang, Y, Xu Z, Hibiya T, Yin B, Wang F.2021.Radiation Path of Diurnal Internal Tides in the Northwestern Pacific Controlled by Refraction and Interference.Journal of Geophysical Research:Oceans, 126, https://doi.org/10.1029/2020JC016972.
Waterman S, Garabato A C N, Polzin K L.2013.Internal waves and turbulence in the Antarctic circumpolar current.Journal of Physical Oceanography, 43(2):259-282, https://doi.org/10.1175/JPO-D-11-0194.1.
Waterhouse A F, MacKinnon J A, Nash J D, Alford M H, Kunze E, Simmons H L, Polzin K L, St.Laurent L C, Sun O M, Pinkel R, Talley L D, Whalen C B, Huussen T N, Carter G S, Fer I, Waterman S, Naveira Garabato A C, Sanford T B, Lee C M.2014.Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate.Journal of Physical Oceanography, 44:1854-1872, https://doi.org/10.1175/JPO-D-13-0104.1.
Whalen C B, MacKinnon J A, Talley L D.2018.Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves.Nature Geoscience, 11(11):842-847, https://doi.org/10.1038/s41561-018-0213-6.
Whalen C B, MacKinnon J A, Talley L D, Waterhouse A F.2015.Estimating the mean diapycnal mixing using a finescale strain parameterization.Journal of Physical Oceanography, 45(4):1174-1188, https://journals.ametsoc.org/view/journals/phoc/45/4/jpo-d-14-0167.1.xml.
Whalen C B, Talley L D, MacKinnon J A.2012.Spatial and temporal variability of global ocean mixing inferred from Argo profiles.Geophysical Research Letters, 39(18):L18612, https://doi.org/10.1029/2012GL053196.
Wolanski E, Colin P, Naithani J, Deleersnijder E, Golbuu Y.2004.Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia.Estuarine, Coastal and Shelf Science, 60(4):705-716, https://doi.org/10.1016/j.ecss.2004.03.009.
Wu L X, Jing Z, Riser S, Visbeck M.2011.Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats.Nature Geoscience, 4:363-366, https://doi.org/10.1038/ngeo1156.
Xu Z H, Liu K, Yin B S, Zhao Z X, Wang Y, Li Q.2016.Longrange propagation and associated variability of internal tides in the South China Sea.Journal of Geophysical Research:Oceans, 121(11):8268-8286, https://doi.org/10.1002/2016JC012105.
Xu Z H, Wang Y, Liu Z Q, McWilliams J C, Gan J P.2021.Insight into the dynamics of the radiating internal tide associated with the Kuroshio Current.Journal of Geophysical Research:Oceans, 126(6):e2020JC017018, https://doi.org/10.1029/2020JC017018.
Xu Z H, Yin B S, Hou Y J, Liu A K.2014.Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait.Journal of Marine Systems, 134:101-112, https://doi.org/10.1016/j.jmarsys.2014.03.002.
Xu Z H, Yin B S, Hou Y J, Xu Y S.2013.Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea.Journal of Geophysical Research:Oceans, 118(1):197-211, https://doi.org/10.1029/2012JC008212.
You J, Xu Z H, Li Q, Robertson R, Zhang P W, Yin B S.2021.Enhanced internal tidal mixing in the Philippine Sea mesoscale environment.Nonlinear Processes in Geophysics, 28(2):271-284, https://doi.org/10.5194/npg-28-271-2021.
Zhang P, Li Q, Xu Z, Yin B.2021.Internal solitary wave generation by the tidal flows beneath the ice keel in the Arctic Ocean.Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-021-1052-7.
Zhao C, Xu Z, Robertson R, Li Q, Wang Y, Yin B.2021.The three dimensional internal tide radiation and dissipation in the Mariana Arc-Trench system.Journal of Geophysical Research:Oceans, 126(5), https://doi.org/10.1029/2020JC016502.
Zhong W L, Guo G J, Zhao J P, Li T, Wang X Y, Mu L J.2018.Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014, Acta Oceanologica Sinica, 37(3):31-41, https://doi.org/10.1007/s13131-018-1198-0.
Copyright © Haiyang Xuebao