Cite this paper:
Zhili DING, Dongsheng ZHOU, Jinxian ZHENG, Xuefeng CHEN, Youqin KONG, Changle QI, Yan LIU, Qiongying TANG, Guoliang YANG, Jinyun YE. Replacing fishmeal with soybean meal affects survival, antioxidant capacity, intestinal microbiota, and mRNA expression of TOR and S6K1 in Macrobrachium rosenbergii[J]. Journal of Oceanology and Limnology, 2022, 40(2): 805-817

Replacing fishmeal with soybean meal affects survival, antioxidant capacity, intestinal microbiota, and mRNA expression of TOR and S6K1 in Macrobrachium rosenbergii

Zhili DING1, Dongsheng ZHOU1, Jinxian ZHENG1, Xuefeng CHEN2, Youqin KONG1, Changle QI1, Yan LIU1, Qiongying TANG1, Guoliang YANG1, Jinyun YE1
1 Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, China;
2 Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
Abstract:
Using alternative plant-derived dietary protein to replace fishmeal, combined with practical evaluation indexes, is a recent focus for aquaculture practices. An 8-week feeding experiment with giant freshwater prawn Macrobrachium rosenbergii post-larvae was conducted to determine the effects of replacing fishmeal (FM) with soybean meal in the feed, in terms of growth performance, antioxidant capacity, intestinal microbiota, and mRNA expression of target of rapamycin (TOR) and ribosomal protein S6 kinase B1 (S6K1). Four isonitrogenous diets with isocaloric value were prepared to contain 100%, 75%, 50%, or 25% FM as the protein source (dietary treatments FM100, FM75, FM50, and FM25, respectively). Each diet was fed to post-larval prawns (mean weight 0.045±0.002 g) twice a day in four replicates. No significant difference in weight gain was observed among all groups, but the survival rate of prawns fed the FM50 and FM25 diets was significantly lower than that of prawns fed the FM diet. The mRNA expression of both TOR and S6K1 were the lowest in hepatopancreas of prawns fed the FM25 diet. Superoxide dismutase activity of prawns fed the FM25 diet was significantly lower than that of prawns fed FM50. In contrast, the malondialdehyde content was significantly higher in prawns fed FM25 as compared with those fed FM75. The proportion of fishmeal in the diet did not affect the composition of core (phylum-level) intestinal microbiota, but greater fishmeal replacement with soybean meal had a potential risk to increase the relative abundance of opportunistic pathogens in the gut when considered at the genus level. These results suggest that fishmeal replacement with soybean meal should not exceed 50% in a diet for post-larval M. rosenbergii.
Key words:    animal protein|plant protein|replacement|protein synthesis|health|crustacean   
Received: 2021-01-09   Revised:
Tools
PDF (488 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Zhili DING
Articles by Dongsheng ZHOU
Articles by Jinxian ZHENG
Articles by Xuefeng CHEN
Articles by Youqin KONG
Articles by Changle QI
Articles by Yan LIU
Articles by Qiongying TANG
Articles by Guoliang YANG
Articles by Jinyun YE
References:
Adegooke O, Samimi-Seisan H.2009.S6 ribosomal protein kinase 1 (S6K1) level in skeletal muscle cells is sensitive to nutritional manipulation.Canadian Journal of Diabetes, 33(3):226, https://doi.org/10.1016/S1499-2671(09) 33110-X.
Anderson A D, Alam M S, Watanabe W O, Carroll PM, Wedegaertner T C, Dowd M K.2016.Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata.Aquaculture, 464:618-628, https://doi.org/10.1016/j.aquaculture.2016.08.006.
Anh N T N, Hien T T T, Mathieu W, Van Hoa N, Sorgeloos P.2009.Effect of fishmeal replacement with Artemia biomass as a protein source in practical diets for the giant freshwater prawn Macrobrachium rosenbergii.
Aquaculture Research, 40(6):669-680, https://doi.org/10.1111/j.1365-2109.2008.02143.x.
AOAC International, Horwitz W.2005.Official Methods of Analysis.18th edn.AOAC International, Gaithersburg.
Beaz-Hidalgo R, Figueras M J.2013.Aeromonas spp.whole genomes and virulence factors implicated in fish disease.Journal of Fish Disease, 36(4):371-388, https://doi.org/10.1111/jfd.12025.
Bijoy V M, Sabu S, Harikrishnan M.2018.Fish meal replacement with squilla (Oratosquilla nepa, Latreille) silage in a practical diet for the juvenile giant freshwater prawn, Macrobrachium rosenbergii de man, 1879.Aquaculture International, 26(5):1229-1245, https://doi.org/10.1007/s10499-018-0280-0.
Blenis J.2017.TOR, the gateway to cellular metabolism, cell growth, and disease.Cell, 171(1):10-13, https://doi.org/10.1016/j.cell.2017.08.019.
Bourlioux P, Koletzko B, Guarner F, Braesco V.2003.The intestine and its microflora are partners for the protection of the host:report on the Danone Symposium "The Intelligent Intestine," held in Paris, June 14, 2002.The American Journal of Clinical Nutrition, 78(4):675-683, https://doi.org/10.1093/ajcn/78.4.675.
Chythanya R, Karunasagar I, Karunasagar I.2002.Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain.Aquaculture, 208(1-2):1-10, https://doi.org/10.1016/S0044-8486(01) 00714-1.
Corradetti M N, Guan K L.2006.Upstream of the mammalian target of rapamycin:do all roads pass through mTOR?Oncogene, 25(48):6347-6360, https://doi.org/10.1038/sj.onc.1209885.
Ding Z L, Chen X F, Kong Y Q, Shao X P, Zhang Y X, Ye J Y.2020.Dietary manganese requirement and its effects on antioxidant enzyme activities, intestinal morphology and microbiota in Oriental River prawn Macrobrachium nipponense (De Haan).Aquaculture, 516:734622, https://doi.org/10.1016/j.aquaculture.2019.734622.
Ding Z L, Kong Y Q, Li J F, Cao F, Zhang Y X, Du Z Y, Ye J Y 2017.Growth and metabolic responses of juvenile Macrobrachium nipponense to different dietary carbohydrate levels.Aquaculture Nutrition, 23(5):1136-1144, https://doi.org/10.1111/anu.12482.
Ding Z L, Zhang Y X, Ye J Y, Du Z Y, Kong Y Q.2015.An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense:growth, nonspecific immunity, and resistance to Aeromonas hydrophila.Fish & Shellfish Immunology, 44(1):295-301, https://doi.org/10.1016/j.fsi.2015.02.024.
Du L, Niu C J.2003.Effects of dietary substitution of soya bean meal for fish meal on consumption, growth, and metabolism of juvenile giant freshwater prawn, Macrobrachium rosenbergii.Aquaculture Nutrition, 9(2):139-143, https://doi.org/10.1046/j.1365-2095.2003.00239.x.
Dumas A, de Lange C F M, France J, Bureau D P.2007.Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss).Aquaculture, 273(1):165-181, https://doi.org/10.1016/j.aquaculture.2007.09.026.
Floreto E A T, Bayer R C, Brown P B.2000.The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical composition of juvenile American lobster, Homarus americanus.Aquaculture, 189(3-4):211-235, https://doi.org/10.1016/S0044-8486(00) 00363-X.
Francis G, Makkar H P S, Becker K.2001.Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish.Aquaculture, 199(3-4):197-227, https://doi.org/10.1016/S0044-8486(01) 00526-9.
Fuentes E N, Safian D, Einarsdottir I E, Valdés J A, Elorza A A, Molina A, Björnsson B T.2013.Nutritional status modulates plasma leptin, AMPK and TOR activation, and mitochondrial biogenesis:implications for cell metabolism and growth in skeletal muscle of the fine flounder.General and Comparative Endocrinology, 186:172-180, https://doi.org/10.1016/j.ygcen.2013.02.009.
Gatlin III D M, Barrows F T, Brown P, Dabrowski K, Gaylord T G, Hardy R W, Herman E, Hu G S, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza E J, Stone D, Wilson R, Wurtele E.2007.Expanding the utilization of sustainable plant products in aquafeeds:a review.Aquacure Research, 38(6):551-579, https://doi.org/10.1111/j.1365-2109.2007.01704.x.
Green T J, Smullen R, Barnes A C.2013.Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota.Veterinary Microbiology, 166(1-2):286-292, https://doi.org/10.1016/j.vetmic.2013.05.009.
Habashy M M.2009.Growth and body composition of juvenile freshwater prawn, Macrobrachium rosenbergii, fed different dietary protein/starch ratios.Global Veterinaria, 3(1):45-50.
Hardy R W.2010.Utilization of plant proteins in fish diets:effects of global demand and supplies of fishmeal.Aquacure Research, 41(5):770-776, https://doi.org/10.1111/j.1365-2109.2009.02349.x.
Hasanuzzaman A F M, Siddiqui M N, Chisty M A H.2009.Optimum replacement of fishmeal with soybean meal in diet for Macrobrachium rosenbergii (De Man 1879) cultured in low saline water.Turkish Journal of Fisheries and Aquatic Sciences, 9(1):17-22.
Hay N, Sonenberg N.2004.Upstream and downstream of mTOR.Genes Development, 18(16):1926-1945, https://doi.org/10.1101/gad.1212704.
Hooper L V, Macpherson A J.2010.Immune adaptations that maintain homeostasis with the intestinal microbiota.Nature Reviews Immunology, 10(3):159-169, https://doi.org/10.1038/nri2710.
Hu X, Yang H L, Yan Y Y, Zhang C X, Ye J D, Lu K L, Hu L H, Zhang J J, Ruan L, Sun Y Z.2019.Effects of fructooligosaccharide on growth, immunity and intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal partially replaced by soybean meal.Aquaculture Nutrition, 25(1):194-204, https://doi.org/10.1111/anu.12843.
Irm M, Taj S, Jin M, Luo J X, Andriamialinirina H J T, Zhou Q C.2020.Effects of replacement of fish meal by poultry by-product meal on growth performance and gene expression involved in protein metabolism for juvenile black sea bream (Acanthoparus schlegelii).Aquaculture, 528:735544, https://doi.org/10.1016/j.aquaculture.2020.735544.
Jiang H W, Bian F Y, Zhou H H, Wang X, Wang K D, Mai K S, He G.2017.Nutrient sensing and metabolic changes after methionine deprivation in primary muscle cells of turbot(Scophthalmus maximus L.).The Journal of Nutritional Biochemistry, 50:74-82, https://doi.org/10.1016/j.jnutbio.2017.08.015.
Kokou F, Sarropoulou E, Cotou E, Rigos G, Henry M, Alexis M, Kentouri M.2015.Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of gilthead sea bream, Sparus aurata.Journal of World Aquaculture Society, 46(2):115-128, https://doi.org/10.1111/jwas.12181.
Li C Q, Zhang B L, Liu C D, Zhou H H, Wang X, Mai K S, He G.2020.Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.).Fish & Shellfish Immunology, 100:261-271, https://doi.org/10.1016/j.fsi.2020.02.070.
Li Y Q, Li J, Wang Q Y.2006.The effects of dissolved oxygen concentration and stocking density on growth and nonspecific immunity factors in Chinese shrimp, Fenneropenaeus chinensis.Aquaculture, 256(1-4):608-616, https://doi.org/10.1016/j.aquaculture.2006.02.036.
Livingstone D R.2013.Oxidative stress in aquatic organisms in relation to pollution and aquaculture.Revue de Médicine Véterinaire, 154(6):427-430.
Mançano S M C N, Campana E H, Felix T P, Barrueto L R L, Pereira P S, Picão R C.2020.Frequency and diversity of Stenotrophomonas spp.carrying blaKPC in recreational coastal waters.Water Research, 185:116210, https://doi.org/10.1016/j.watres.2020.116210.
Muralisankar T, Bhavan P S, Radhakrishnan S, Seenivasan C, Srinivasan V, Santhanam P.2015.Effects of dietary zinc on the growth, digestive enzyme activities, muscle biochemical compositions, and antioxidant status of the giant freshwater prawn Macrobrachium rosenbergii.Aquaculture, 448:98-104, https://doi.org/10.1016/j.aquaculture.2015.05.045.
Otta S K, Karunasagar I.1999.Bacterial flora associated with shrimp culture ponds growing Penaeus monodon in India.Journal of Aquaculture in the Tropics, 14(4):309-318.
Pessoa R B G, Marques D S C, Lima R O H A, Oliveira M B M, Lima G M S, Maciel de Carvalho E V M, Coelho L C B B.2020.Molecular characterization and evaluation of virulence traits of Aeromonas spp.isolated from the tambaqui fish (Colossoma macropomum).Microbial Pathogenesis, 147:104273, https://doi.org/10.1016/j.micpath.2020.104273.
Pruesse E, Quast C, Knittel K, Fuchs B M, Ludwig W, Peplies J, Glöckner F O.2007.SILVA:a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.Nucleic Acids Research.35(21):7188-7196, https://doi.org/10.1093/nar/gkm864.
Qin Q, Qin S J, Wang L, Lei W W.2012.Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium.Aquatic Toxicology, 106-107:140-146, httpdoi.org/10.1016/j.aquatox.2011.08.013.
Rahimnejad S, Lu K L, Wang L, Song K, Mai K S, Davis D A, Zhang C X.2019.Replacement of fish meal with Bacillus pumillus SE5 and Pseudozyma aphidis ZR1 fermented soybean meal in diets for Japanese seabass (Lateolabrax japonicus).Fish & Shellfish Immunology, 84:987-997, https://doi.org/10.1016/j.fsi.2018.11.009.
Reveco F E, Øverland M, Romarheim O H, Mydland L T.2014.Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (Salmo salar L.).Aquaculture, 420-421:262-269, https://doi.org/10.1016/j.aquaculture.2013.11.007.
Rizzatti G, Lopetuso L R, Gibiino G, Binda C, Gasbarrini A.2017.Proteobacteria:a common factor in human diseases.Biomed Research International, 2017:9351507, https://doi.org/10.1155/2017/9351507.
Roosta Z, Hajimoradloo A, Ghorbani R, Hoseinifar S H.2014.The effects of dietary vitamin C on mucosal immune responses and growth performance in Caspian roach(Rutilus rutilus caspicus) fry.Fish Physiology and Biochemistry, 40(5):601-607, https://doi.org/10.1007/s10695-014-9951-6.
Saxton R A, Sabatini D M.2017.mTOR signaling in growth, metabolism, and disease.Cell, 168(6):960-976, https://doi.org/10.1016/j.cell.2017.02.004.
Shankar K, Mehendale H M.2014.Oxidative Stress.In:Wexler P ed.Encyclopedia of Toxicology.3rd edn.Academic Press, London.p.735-737.
Shao J C, Wang B J, Liu M, Jiang K Y, Wang L, Wang M Q.2019.Replacement of fishmeal by fermented soybean meal could enhance the growth performance but not significantly influence the intestinal microbiota of white shrimp Litopenaeus vannamei.Aquaculture, 504:354-360, https://doi.org/10.1016/j.aquaculture.2019.02.011.
Shen J F, Liu H Y, Tan B P, Dong X H, Yang Q H, Chi S Y, Zhang S.2020.Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus).Aquaculture Nutrition, 26(4):1119-1130, https://doi.org/10.1111/anu.13069.
Shin N R, Whon T W, Bae J W.2015.Proteobacteria:microbial signature of dysbiosis in gut microbiota.Trends in Biotechnology, 33(9):496-503, https://doi.org/10.1016/j.tibtech.2015.06.011.
Siriyappagouder P, Galindo-Villegas J, Lokesh J, Mulero V, Fernandes J M O, Kiron V.2018.Exposure to yeast shapes the intestinal bacterial community assembly in zebrafish larvae.Frontiers in Microbiology, 9:1868, https://doi.org/10.3389/fmicb.2018.01868.
Sitjà-Bobadilla A, Peña-Llopis S, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J.2005.Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata).Aquaculture, 249(1-4):387-400, https://doi.org/10.1016/j.aquaculture.2005.03.031.
Smith P, Davey S.1993.Evidence for the competitive exclusion of Aeromonas salmonicida from fish with stress-inducible furunculosis by a fluorescent pseudomonad.Journal of Fish Diseases, 16(5):521-524, https://doi.org/10.1111/j.1365-2761.1993.tb00888.x.
Sonenberg N, Hinnebusch A G.2009.Regulation of translation initiation in eukaryotes:mechanisms and biological targets.Cell, 136(4):731-745, https://doi.org/10.1016/j.cell.2009.01.042.
Sun P, Jin M, Ding L Y, Lu Y, Ma H N, Yuan Y, Zhou Q C.2018.Dietary lipid levels could improve growth and intestinal microbiota of juvenile swimming crab, Portunus trituberculatus.Aquaculture, 490:208-216, https://doi.org/10.1016/j.aquaculture.2018.02.018.
Sun S M, Fu H T, Gu Z M, Zhu J.2016.Effects of stocking density on the individual growth and differentiation of the oriental river prawn Macrobrachium nipponense (de Haan, 1849) (Caridea:Palaemonidae).Journal of Crustacean Biology, 36(6):769-775, https://doi.org/10.1163/1937240X-00002482.
Tibaldi E, Hakim Y, Uni Z, Tulli F, Francesco M, Luzana U, Harpez S.2006.Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax).Aquaculture, 261(1):182-193, https://doi.org/10.1016/j.aquaculture.2006.06.026.
Tidwell J H, Webster C D, Yancey D H, D' Abramo L R.1993.Partial and total replacement of fish meal with soybean meal and distillers' by-products in diets for pond culture of the freshwater prawn (Macrobrachium rosenbergii).Aquaculture, 118(1-2):119-130, https://doi.org/10.1016/0044-8486(93) 90285-7.
Wu J Q, Kosten T R, Zhang X Y.2013.Free radicals, antioxidant defense systems, and schizophrenia.Progress in Neuro-Psychopharmacology and Biological Psychiatry, 46:200-206, https://doi.org/10.1016/j.pnpbp.2013.02.015.
Wu M J, Lu S D, Wu X Y, Jiang S T, Luo Y, Yao W, Jin Z B.2017.Effects of dietary amino acid patterns on growth, feed utilization and hepatic IGF-I, TOR gene expression levels of hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂) juveniles.Aquaculture, 468:508-514, https://doi.org/10.1016/j.aquaculture.2016.11.019.
Xu C Y, Liu W B, Zhang D D, Liu J D, Zheng X C, Zhang C Y, Yao J G, Zhu C M, Chi C.2020.Effects of partial fish meal replacement with two fermented soybean meals on the growth of and protein metabolism in the Chinese mitten crab (Eriocheir sinensis).Aquaculture Reports, 17:100328, https://doi.org/10.1016/j.aqrep.2020.100328.
Ye G L, Dong X H, Yang Q H, Chi S Y, Liu H Y, Zhang H T, Tan B P, Zhang S.2020a.A formulated diet improved digestive capacity, immune function and intestinal microbiota structure of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂) when compared with chilled trash fish.Aquaculture, 523:735230, https://doi.org/10.1016/j.aquaculture.2020.735230.
Ye G L, Dong X H, Yang Q H, Chi S Y, Liu H Y, Zhang H T, Tan B P, Zhang S.2020b.Dietary replacement of fish meal with peanut meal in juvenile hybrid grouper(Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus♂):growth performance, immune response and intestinal microbiota.Aquaculture Reports, 17:100327, https://doi.org/10.1016/j.aqrep.2020.100327.
Yuan X Y, Liu M Y, Cheng H H, Huang Y Y, Dai Y J, Liu W B, Jiang G Z.2019.Replacing fish meal with cottonseed meal protein hydrolysate affects amino acid metabolism via AMPK/SIRT1 and TOR signaling pathway of Megalobrama amblycephala.Aquaculture, 510:225-233, https://doi.org/10.1016/j.aquaculture.2019.05.056.
Zhang X P, Shang B D, Li X Y, Li Z Y, Tao S.2020.Complete genome sequence data of multidrug-resistant Stenotrophomonas sp.strain SXG-1.Journal of Global Antimicrobial Resistance, 22:206-209, https://doi.org/10.1016/j.jgar.2020.03.005.
Zhu Y Z, Yang G H.1995.Preliminary studies on suitable dietary protein level and soybean meal as dietary protein source of the freshwater prawn Macrobrachium rosenbergii.Fisheries Science & Technology Information, 22(3):125-128, https://doi.org/10.16446/j.cnki.1001-1994.1995.03.008. (in Chinese)
Copyright © Haiyang Xuebao