Cite this paper:
Chenchen GUO, Chaomin SUN, Shimei WU. Screening and characterization of proteases produced by deep-sea cold seep bacteria[J]. Journal of Oceanology and Limnology, 2022, 40(2): 678-689

Screening and characterization of proteases produced by deep-sea cold seep bacteria

Chenchen GUO1, Chaomin SUN2, Shimei WU1
1 College of Life Sciences, Qingdao University, Qingdao 266071, China;
2 CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Fifty protease-producing strains were screened from sediment of deep-sea cold seep, and divided into four different categories:Bacillus, Pseudoalteromonas, Vibrio, and Alteromonas according to the sequences of 16s rRNA. Their abilities to produce protease, amylase, and lipase were determined, and a Bacillus strain gcc-1 displayed very strong alkaline protease activity and stability under different thermal and acidic conditions. The purification of the protease produced by strain gcc-1 was carried out by precipitation with ammonium sulfate, and sequentially chromatographed by anion exchange column and gel filtration. The purified protease showed a single band at the molecular weight of 28 kDa by SDS-PAGE. The characterization results show that the purified protease exhibited a considerable activity and stability in a wide thermal range of 10-80℃ and a wide acidic range of pH 6.5-11.5, and displayed highest activity at 40℃ and pH 8.5. Notably, the protease still maintained high activity even at low to 10℃. Furthermore, the protease exhibited good stability in presence of different surfactants, organic solvents, oxidizing agent H2O2, and commercial detergents. Therefore, the protease produced by gcc-1 is a cold active and high stable enzyme, and has a promising potential in laundry detergent as an additive.
Key words:    deep-sea|Bacillus|alkaline protease|purification|characterization   
Received: 2020-11-20   Revised:
Tools
PDF (652 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Chenchen GUO
Articles by Chaomin SUN
Articles by Shimei WU
References:
Ali M B, Khemakhem B, Robert X, Haser R, Bejar S.2006.Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain.Biochemical Journal, 394(1):51-56, https://doi.org/10.1042/BJ20050726.
Cristóbal H A, López M A, Kothe E, Abate C M.2011.Diversity of protease-producing marine bacteria from sub-Antarctic environments.Journal of Basic Microbiology, 51(6):590-600, https://doi.org/10.1002/jobm.201000413.
Del Rosso J Q.2013.Application of protease technology in dermatology:rationale for incorporation into skin care with initial observations on formulations designed for skin cleansing, maintenance of hydration, and restoration of the epidermal permeability barrier.The Journal of Clinical and Aesthetic Dermatology, 6(6):14-22.
Dube S, Alam S I, Singh L.2000.Studies on anaerobic proteolytic bacteria of Leh, India.World Journal of Microbiology and Biotechnology, 16(3):297-301, https://doi.org/10.1023/A:1008935425175.
Espósito T S, Amaral I P G, Buarque D S, Oliveira G B, Carvalho Jr L B, Bezerra R S.2009.Fish processing waste as a source of alkaline proteases for laundry detergent.Food Chemistry, 112(1):125-130, https://doi.org/10.1016/j.foodchem.2008.05.049.
Fathi N M, Dileep D, Deepti D.2005.Potential application of protease isolated from Pseudomonas aeruginosa PD100.Electronic journal of biotechnology, 8(2):197-203, https://doi.org/10.2225/vol8-issue2-fulltext-5.
Garciacarreno F L, Dimes L E, Haard N F.1993.Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors.Analytical Biochemistry, 214(1):65-69, https://doi.org/10.1006/abio.1993.1457.
Gupta R, Beg Q, Lorenz P.2002.Bacterial alkaline proteases:molecular approaches and industrial applications.Applied Microbiology and Biotechnology, 59(1):15-32, https://doi.org/10.1007/s00253-002-0975-y.
Haki G D, Rakshit S K.2003.Developments in industrially important thermostable enzymes:a review.Bioresource Technology, 89(1):17-34, https://doi.org/10.1016/S0960-8524(03) 00033-6.
Hassan S W M, Latif H H A E, Ali S M.2018.Production of cold-active lipase by free and immobilized marine Bacillus cereus HSS:application in wastewater treatment.Frontiers in Microbiology, 9:2377, https://doi.org/10.3389/fmicb.2018.02377.
Ichida J M, Krizova L, Lefevre C A, Keener H M, Elwell D L, Burtt Jr E H.2001.Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost.Journal of Microbiological Methods, 47(2):199-208, https://doi.org/10.1016/S0167-7012(01) 00302-5.
Jain D, Pancha I, Mishra S K, Shrivastav A, Mishra S.2012.Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.:a potential additive for laundry detergents.Bioresource Technology, 115:228-236, https://doi.org/10.1016/j.biortech.2011.10.081.
Joshi S, Satyanarayana T.2013a.Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis.Bioresource Technology, 131:76-85, https://doi.org/10.1016/j.biortech.2012.12.124.
Joshi S, Satyanarayana T.2013b.Biotechnology of cold-active proteases.Biology, 2(2):755-783, https://doi.org/10.3390/biology2020755.
Lee S H, Chung W C, Yu Y J, Rhee Y H.2009.Effect of alkaline protease-producing Exiguobacterium sp.YS1 inoculation on the solubilization and bacterial community of waste activated sludge.Bioresource Technology, 100(20):4597-4603, https://doi.org/10.1016/j.biortech.2009.04.056.
Li P Y, Zhang Y Q, Zhang Y, Jiang W X, Wang Y J, Zhang Y S, Sun Z Z, Li C Y, Zhang Y Z, Shi M, Song X Y, Zhao L S, Chen X L.2020a.Study on a novel cold-active and halotolerant monoacylglycerol lipase widespread in marine bacteria reveals a new group of bacterial monoacylglycerol lipases containing unusual C(A/S) HSMG catalytic motifs.Frontiers in Microbiology, 11:9, https://doi.org/10.3389/fmicb.2020.00009.
Li Q, Yi L, Marek P, Iverson B L.2013.Commercial proteases:present and future.FEBS Letters, 587(8):1155-1163,https://doi.org/10.1016/j.febslet.2012.12.019
Li X P, Zhang Y, Wu T, Sun X M, Yang T, Wang L J, Li X Y, Wang J Z, Wang Y H, Yu H T.2020b.Major ions in drinking and surface waters from five cities in arid and semi-arid areas, NW China:spatial occurrence, water chemistry, and potential anthropogenic inputs.Environmental Science and Pollution Research, 27(5):5456-5468, https://doi.org/10.1007/s11356-019-07149-9.
Ma C L, Ni X M, Chi Z M, Ma L Y, Gao L M.2007.Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources.Marine Biotechnology, 9(3):343-351, https://doi.org/10.1007/s10126-006-6105-6.
Makino K, Koshikawa T, Nishihara T, Ichikawa T, Kondo M.1981.Studies on protease from marine bacteria.1 Isolation of marine Pseudomonas sp.145-2 and purification of protease.Microbios, 31(124):103-112.
Mamiatis T, Fritsch E F, Sambrook J, Engel J.1985.Molecular cloning-A laboratory manual.New York:Cold Spring Harbor Laboratory.1982, 545 S., 42 $.ActaBiotechnologica, 5(1):104, https://doi.org/10.1002/abio.370050118.
Martin M, Biver S, Steels S, Barbeyron T, Jam M, Portetelle D, Michel G, Vandenbol M.2014.Identification and characterization of a halotolerant, cold-active marine endo-β-1, 4-glucanase by using functional metagenomics of seaweed-associated microbiota.Applied and Environmental Microbiology, 80(16):4958-4967, https://doi.org/10.1128/AEM.01194-14.
Marx J C, Collins T, D'Amico S, Feller G, Gerday C.2007.Cold-adapted enzymes from marine antarctic microorganisms.Marine Biotechnology, 9(3):293-304, https://doi.org/10.1007/s10126-006-6103-8.
Niyonzima F N, More S S.2015a.Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.Journal of Basic Microbiology, 55(10):1149-1158, https://doi.org/10.1002/jobm.201500112.
Niyonzima F N, More S.2015b.Detergent-compatible proteases:microbial production, properties, and stain removal analysis.Preparative Biochemistry & Biotechnology, 45(3):233-258, https://doi.org/10.1080/10826068.2014.907183.
Oberoi R, Beg Q K, Puri S, Saxena R K, Gupta R.2001.Characterization and wash performance analysis of an SDS-stable alkaline protease from a Bacillus sp.World Journal of Microbiology and Biotechnology, 17(5):493-497, https://doi.org/10.1023/A:1011911109179.
Ogino H, Ishikawa H.2001.Enzymes which are stable in the presence of organic solvents.Journal of Bioscience and Bioengineering, 91(2):109-116, https://doi.org/10.1016/S1389-1723(01) 80051-7.
Oh K H, Seong C S, Lee S W, Kwon O S, Park Y S.1999.Isolation of a psychrotrophic Azospirillum sp.and characterization of its extracellular protease.FEMS Microbiology Letters, 174(1):173-178, https://doi.org/10.1111/j.1574-6968.1999.tb13565.x.
Outtrup H, Boyce C O L.1990.Microbial proteinases and biotechnology.In:Fogarty W M, Kelly C T eds.Microbial Enzymes and Biotechnology.Springer, Dordrecht.p.227-254, https://doi.org/10.1007/978-94-009-0765-2_6.
Sun M, Wang Y J, Zhang Y B, Hong Y G, Yan X L, Chen Y Z, Wang C B, Liu X P.2000.Study on isolation and culture condition of one marine bacterium YS-9412-130 producing low-temperature alkaline protease.Marine Fisheries Research, 21(4):1-5. (in Chinese with English abstract)
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S.2013.MEGA6:Molecular evolutionary genetics analysis version 6.0.Molecular Biology and Evolution, 30(12):2725-2729, https://doi.org/10.1093/molbev/mst197.
Ting L, Williams T J, Cowley M J, Lauro F M, Guilhaus M, Raftery M J, Cavicchioli R.2010.Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics.Environmental Microbiology, 12(10):2658-2676, https://doi.org/10.1111/j.1462-2920.2010.02235.x.
Vázquez S C, Hernández E, Cormack W P M.2008.Extracellular proteases from the Antarctic marine Pseudoalteromonas sp.P96-47 strain.Revista Argentina de Microbiologia, 40(1):63-71, https://doi.org/10.1016/j.resmic.2007.12.001.
Wang F, Hao J H, Yang C Y, Sun M.2010.Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122.Applied Biochemistry and Biotechnology, 162(5):1497-1505, https://doi.org/10.1007/s12010-010-8927-y.
Wu G B, Zhang X N, Wei L, Wu G J, Kumar A, Mao T, Liu Z D.2015a.A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis.International Journal of Biological Macromolecules, 81:180-187, https://doi.org/10.1016/j.ijbiomac.2015.07.045.
Wu S M, Liu G, Zhang D C, Li C X, Sun C M.2015b.Purification and biochemical characterization of an alkaline protease from marine bacteria Pseudoalteromonas sp.129-1.Journal of Basic Microbiology, 55(12):1427-1434, https://doi.org/10.1002/jobm.201500327.
Xu J X, Zhuang Y, Wu B, Su L, He B F.2013.Calcium-ioninduced stabilization of the protease from Bacillus cereus WQ9-2 in aqueous hydrophilic solvents:effect of calcium ion binding on the hydration shell and intramolecular interactions.Journal of Biological Inorganic Chemistry, 18(2):211-221, https://doi.org/10.1007/s00775-012-0966-0.
Zhou M Y, Chen X L, Zhao H L, Dang H Y, Luan X W, Zhang X Y, He H L, Zhou B C, Zhang Y Z.2009.Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea.Microbial Ecology, 58(3):582-590, https://doi.org/10.1007/s00248-009-9506-z.
Zhou Y, Chen X H, Li X, Han Y T, Wang Y N, Yao R Y, Li S Y.2019.Purification and characterization of a new coldadapted and thermo-tolerant chitosanase from marine bacterium Pseudoalteromonas sp.SY39.Molecules, 24(1):183, https://doi.org/10.3390/molecules24010183.
Copyright © Haiyang Xuebao