Cite this paper:
Wangwang YE, Guanxiang DU, Honghai ZHANG, Guiling ZHANG. Methane in the Yellow Sea and East China Sea: dynamics, distribution, and production[J]. Journal of Oceanology and Limnology, 2022, 40(2): 530-550

Methane in the Yellow Sea and East China Sea: dynamics, distribution, and production

Wangwang YE1,2,3, Guanxiang DU1,3, Honghai ZHANG1,3, Guiling ZHANG1,3
1 Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
2 Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
3 Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China
Abstract:
The Yellow Sea (YS) and East China Sea (ECS) are important marginal seas of the western Pacific. Understanding the dynamics of methane (CH4) in the YS and ECS are essential to evaluate the role of coastal seas in global warming. We measured dissolved CH4 at various depths in the water column of the YS and ECS during a cruise from March to April 2017. The concentrations of CH4 varied greatly in different water masses, suggesting that the hydrographic conditions can substantially affect the CH4 distribution. The CH4 budget in the shelf of the ECS, which was estimated with a box model, suggests CH4 consumption in the water column was the major sink (>95%), followed by a loss with a total of 2.2% CH4 released to the atmosphere. Overall a local CH4 production of 0.28 nmol/(L·d) was needed to maintain the CH4 excess. Results from laboratory incubations showed an increase in CH4 (1.5 times higher than the value of the control) after the addition of dimethylsulfoniopropionate (DMSP). Field incubations result in a CH4 production rate of 1.2 nmol/(L·d) under a N-stressed conditions (N:P<1), indicates that the DMSPdependent CH4 production prefer to occur in the oligotrophic seawaters, where nitrogen is depleted. This study demonstrates that the marginal seas of China is a hotspot for CH4 dynamics, and the cycling of methylated sulfur compounds (such as DMSP) may contribute importantly to locally formed CH4. This may have further implication to carbon and sulfur biogeochemical cycles in the western Pacific.
Key words:    methane|East China Sea|Yellow Sea|aerobic production|dimethylsulfide (DMS)|dimethylsulfoniopropionate (DMSP)   
Received: 2021-01-07   Revised:
Tools
PDF (1106 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Wangwang YE
Articles by Guanxiang DU
Articles by Honghai ZHANG
Articles by Guiling ZHANG
References:
Araujo J, Pratihary A, Naik R, Naik H, Naqvi S W A.2018.Benthic fluxes of methane along the salinity gradient of a tropical monsoonal estuary:implications for CH4 supersaturation and emission.Marine Chemistry, 202:73-85, https://doi.org/10.1016/j.marchem.2018.03.008.
Archer S D, Gilbert F J, Nightingale P D, Zubkov M V, Taylor A H, Smith G C, Burkill P H.2002.Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach.Deep Sea Research Part II:Topical Studies in Oceanography, 49(15):3067-3101, https://doi.org/10.1016/S0967-0645(02) 00072-3.
Bange H W, Bartell U H, Rapsomanikis S, Andreae M O.1994.Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane.Global Biogeochemical Cycles, 8(4):465-480, https://doi.org/10.1029/94GB02181.
Bange H W, Bergmann K, Hansen H P, Kock A, Koppe R, Malien F, Ostrau C.2010.Dissolved methane during hypoxic events at the Boknis Eck time series station(Eckernförde Bay, SW Baltic Sea).Biogeosciences, 7(4):1279-1284, https://doi.org/10.5194/bg-7-1279-2010.
Borges A V, Speeckaert G, Champenois W, Scranton M I, Gypens N.2018.Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the Southern Bight of the North Sea.Ecosystems, 21(4):583-599, https://doi.org/10.1007/s10021-017-0171-7.
Bryan J R, Rlley J P, Williams P J L.1976.A winkler procedure for making precise measurements of oxygen concentration for productivity and related studies.Journal of Experimental Marine Biology and Ecology, 21(3):191-197, https://doi.org/10.1016/0022-0981(76) 90114-3.
Bussmann I, Hackbusch S, Schaal P, Wichels A.2017.Methane distribution and oxidation around the Lena Delta in summer 2013.Biogeosciences, 14(21):4985-5002, https://doi.org/10.5194/bg-14-4985-2017.
Chen C T A, Wang S L.1999.Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf.Journal of Geophysical Research:Oceans, 104(C9):20675-20686, https://doi.org/10.1029/1999jc900055.
Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, Kiene R P.2009.Methane production in aerobic oligotrophic surface water in the central Arctic Ocean.Biogeosciences, 6:10355-10379, https://doi.org/10.5194/bgd-6-10355-2009.
Damm E, Kiene R P, Schwarz J, Falck E, Dieckmann G.2008.Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP.Marine Chemistry, 109(1-2):45-59, https://doi.org/10.1016/j.marchem.2007.12.003.
Damm E, Thoms S, Beszczynska-Möller A, Nöthig E M, Kattner G.2015.Methane excess production in oxygenrich polar water and a model of cellular conditions for this paradox.Polar Science, 9(3):327-334, https://doi.org/10.1016/j.polar.2015.05.001.
Davis D, Chen G, Kasibhatla P, Jefferson A, Tanner D, Eisele F, Lenschow D, Neff W, Berresheim H.1998.DMS oxidation in the Antarctic marine boundary layer:comparison of model simulations and held observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p).Journal of Geophysical Research:Atmospheres, 103(D1):1657-1678, https://doi.org/10.1029/97JD03452.
de Angelis M A, Lee C.1994.Methane production during zooplankton grazing on marine phytoplankton.Limnology and Oceanography, 39(6):1298-1308, https://doi.org/10.4319/lo.1994.39.6.1298.
Di P F, Feng D, Tao J, Chen D F.2020.Using time-series videos to quantify methane bubbles flux from natural cold seeps in the South China Sea.Minerals, 10(3):216, https://doi.org/10.3390/min10030216.
Ferrón S, Alonso-Pérez F, Ortega T, Forja J M.2009.Benthic respiration on the northeastern shelf of the Gulf of Cádiz(SW Iberian Peninsula).Marine Ecology Progress Series, 392:69-80, https://doi.org/10.3354/meps08240.
Florez-Leiva L, Damm E, Farías L.2013.Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem.Progress in Oceanography, 112-113:38-48, https://doi.org/10.1016/j.pocean.2013.03.005.
Grossart H P, Frindte K, Dziallas C, Eckert W, Tang K W.2011.Microbial methane production in oxygenated water column of an oligotrophic lake.Proceedings of the National Academy of Sciences of the United States of America, 108(49):19657-19661, https://doi.org/10.1073/pnas.1110716108.
Guan B X, Fang G H.2006.Winter counter-wind currents off the southeastern China coast:a review.Journal of Oceanography, 62(1):1-24, https://doi.org/10.1007/s10872-006-0028-8.
Günthel M, Donis D, Kirillin G, Ionescu D, Bizic M, McGinnis D F, Grossart H P, Tang K W.2019.Contribution of oxic methane production to surface methane emission in lakes and its global importance.Nature Communications, 10(1):5497, https://doi.org/10.1038/s41467-019-13320-0.
Hickox R, Belkin I, Cornillon P, Shan Z Q.2000.Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai seas from satellite SST data.Geophysical Research Letters, 27(18):2945-2948, https://doi.org/10.1029/1999GL011223.
IPCC.2013.Climate Change 2013:The Physical Science Basis.Cambridge University Press, New York.Jackson J E.1991.A User's Guide to Principal Components.John Wiley & Sons, New York.
Jiang S, Zhang J, Zhang R F, Xue Y, Zheng W.2018.Dissolved lead in the East China Sea with implications for impacts of marginal seas on the open ocean through cross-shelf exchange.Journal of Geophysical Research:Oceans, 123(8):6004-6018, https://doi.org/10.1029/2018JC013955.
Jin J, Liu S M, Ren J L, Liu C G, Zhang J, Zhang G L, Huang D J.2013.Nutrient dynamics and coupling with phytoplankton species composition during the spring blooms in the Yellow Sea.Deep Sea Research Part II:Topical Studies in Oceanography, 97:16-32, https://doi.org/10.1016/j.dsr2.2013.05.002.
Jørgensen B B, Weber A, Zopfi J.2001.Sulfate reduction and anaerobic methane oxidation in Black Sea sediments.Deep Sea Research Part I:Oceanographic Research Papers, 48(9):2097-2120, https://doi.org/10.1016/S0967-0637(01) 00007-3.
Jørgensen B B.1977.Bacterial sulfate reduction within reduced microniches of oxidized marine sediments.Marine Biology, 41(1):7-17, https://doi.org/doi:10.1007/bf00390576.
Judd A G.2004.Natural seabed gas seeps as sources of atmospheric methane.Environmental Geology, 46(8):988-996, https://doi.org/10.1007/s00254-004-1083-3.
Karl D M, Beversdorf L, Björkman K M, Church M J, Martinez A, Delong E F.2008.Aerobic production of methane in the sea.Nature Geoscience, 1(7):473-478, https://doi.org/10.1038/ngeo234.
Karl D M, Tilbrook B D.1994.Production and transport of methane in oceanic particulate organic matter.Nature 368(6473):732-734, https://doi.org/10.1038/368732a0.
Kiene R P, Linn L J, Bruton J A.2000.New and important roles for DMSP in marine microbial communities.Journal of Sea Research, 43(3-4):209-224, https://doi.org/10.1016/S1385-1101(00) 00023-X.
Kiene R P, Oremland R S, Catena A, Miller L G, Capone D G.1986.Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen.Applied and Environmental Microbiology, 52(5):1037-1045, https://doi.org/10.1128/AEM.52.5.1037-1045.1986.
Kiene R P, Service S K.1991.Decomposition of dissolved DMSP and DMS in estuarine waters:dependence on temperature and substrate concentration.Marine Ecology Progress Series, 76:1-11, https://doi.org/10.3354/meps076001.
Kiene R P, Taylor B F.1988.Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments.Applied and Environmental Microbiology, 54(9):2208-2212, https://doi.org/10.1002/bit.260320617.
Li C X, Yang G P, Wang B D, Xu Z J.2016.Vernal distribution and turnover of dimethylsulfide (DMS) in the surface water of the Yellow Sea.Journal of Geophysical Research:Oceans, 121(10):7495-7516, https://doi.org/10.1002/2016JC011901.
Li F.1989.Distinction, discrimination and analysis of water masses in the Yellow Sea and East China Sea areas in spring.Journal of Ocean University of Qingdao, 19(1):22-34, http://doi.org/10.16441/j.cnki.hdxb.1989.s1.007. (in Chinese with English abstract)
Li W, Wang Y H, Wang J N, Wei H.2012.Distributions of water masses and hydrographic structures in the Yellow Sea and East China Sea in spring and summer 2011.Oceanologia et Limnologia Sinica, 43(3):615-623. (in Chinese with English abstract)
Lin S, Hsieh I J, Huang K M, Wang C H.2002.Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments.Chemical Geology, 182(2-4):377-394, https://doi.org/10.1016/s0009-2541(01) 00331-x.
Lin S, Huang K M, Chen S K.2000.Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments.Continental Shelf Research, 20(4-5):619-635, https://doi.org/10.1016/S0278-4343(99) 00088-6.
Liu J, Yu Z G, Zang J Y, Sun T, Zhao C Y, Ran X B.2015.Distribution and budget of organic carbon in the Bohai and Yellow Seas.Advances in Earth Science, 30(5):564-578, https://doi.org/10.11867/j.issn.1001-8166.2015.05.564. (in Chinese with English abstract)
Luong L D, Shakirov R B, Hoang N, Shinjo R, Obzhirov A, Syrbu N, Shakirova M.2019.Features in REE and methane anomalies distribution in the East China Sea water column:a comparison with the South China Sea.Water Resources, 46:807-816, https://doi.org/10.1134/S0097807819050142.
Luong L D, Shinjo R, Hoang N, Shakirov R B, Syrbu N.2018.Spatial variations in dissolved rare earth element concentrations in the East China Sea water column.Marine Chemistry, 205:1-15, https://doi.org/10.1016/j.marchem.2018.07.004.
Martínez A, Ventouras L A, Wilson S T, Karl D M, DeLong E F.2013.Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria.Frontiers in Microbiology, 4:340, https://doi.org/10.3389/fmicb.2013.00340.
Matrai P A, Keller M D.1993.Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine.Continental Shelf Research, 13(8-9):831-843, https://doi.org/10.1016/0278-4343(93) 90012-M.
Matsuno T, Lee J S, Yanao S.2009.The Kuroshio exchange with the South and East China Seas.Ocean Science, 5(3):303-312, https://doi.org/10.5194/os-5-303-2009.
Metcalf W W, Griffin B M, Cicchillo R M, Gao J T, Janga S C, Cooke H A, Circello B T, Evans B S, MartensHabbena W, Stahl D A, van der Donk W A.2012.Synthesis of methylphosphonic acid by marine microbes:a source for methane in the aerobic ocean.Science, 337(6098):1104-1107, https://doi.org/10.1126/science.1219875.
Nowak J B, Davis D D, Chen G, Eisele F L, Mauldin R L, Tanner D J, Cantrell C, Kosciuch E, Bandy A, Thornton D, Clarke A.2001.Airborne observations of DMSO, DMS, and OH at marine tropical latitudes.Geophysical Research Letters, 28(11):2201-2204, https://doi.org/10.1029/2000GL012297.
Osudar R, Matoušů A, Alawi M, Wagner D, Bussmann I.2015.Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea).Estuarine, Coastal and Shelf Science, 160:10-21, https://doi.org/10.1016/j.ecss.2015.03.028.
Qi J F, Yin B S, Zhang Q L, Yang D Z, Xu Z H.2014.Analysis of seasonal variation of water masses in East China Sea.Chinese Journal of Oceanology and Limnology, 32(4):958-971, https://doi.org/10.1007/s00343-014-3269-1.
Rao G D, Sarma V V S S.2016.Variability in concentrations and fluxes of methane in the Indian estuaries.Estuaries and Coasts, 39(6):1639-1650, https://doi.org/10.1007/s12237-016-0112-2.
Reisch C R, Moran M A, Whitman W B.2011.Bacterial catabolism of dimethylsulfoniopropionate (DMSP).Frontiers in Microbiology, 2:172, https://doi.org/10.3389/fmicb.2011.00172.
Repeta D J, Ferrón S, Sosa O A, Johnson C G, Repeta L D, Acker M, DeLong E F, Karl D M.2016.Marine methane paradox explained by bacterial degradation of dissolved organic matter.Nature Geoscience, 9(12):884-887, https://doi.org/10.1038/ngeo2837.
Rogener M K, Bracco A, Hunter K S, Saxton M A, Joye S B.2018.Long-term impact of the Deepwater Horizon oil well blowout on methane oxidation dynamics in the northern Gulf of Mexico.Elementa:Science of the Anthropocene, 6:73, https://doi.org/10.1525/elementa.332.
Rogener M K, Sipler R E, Hunter K S, Bronk D A, Joye S B.2019.Pelagic methane oxidation in the northern Chukchi Sea.Limnology and Oceanography, 65(1):96-110, https://doi.org/10.1002/lno.11254.
Sakai H, Gamo T, Kim E S, Tsutsumi M, Tanaka T, Ishibashi J, Wakita H, Yamano M, Oomori T.1990.Venting of carbon dioxide-rich fluid and hydrate formation in Mid-Okinawa trough Backarc basin.Science, 248(4959):1093-1096, https://doi.org/10.1126/science.248.4959.1093.
Saunois M, Stavert A R, Poulter B, Bousquet P, Bousquet P, Canadell J G, Jackson R B, Raymond P A, Dlugokencky E J, Houweling S, Patra P K, Ciais P, Arora V K, Bastviken D, Bergamaschi P, Blake D R, Brailsford G, Bruhwiler L, Carlson K M, Carrol M, Castaldi S, Chandra N, Crevoisier C, Crill P M, Covey K, Curry C L, Etiope G, Frankenberg C, Gedney N, Hegglin M I, HöglundIsaksson L, Hugelius G, Ishizawa M, Ito A, JanssensMaenhout G, Jensen K M, Joos F, Kleinen T, Krummel P B, Langenfelds R L, Laruelle G G, Liu L, Machida T, Maksyutov S, McDonald K C, McNorton J, Miller P A, Melton J R, Morino I, Müller J, Murguia-Flores F, Naik V, Niwa Y, Noce S, O'Doherty S, Parker R J, Peng C H, Peng S S, Peters G P, Prigent C, Prinn R, Ramonet M, Regnier P, Riley W J, Rosentreter J A, Segers A, Simpson I J, Shi H, Smith S J, Steele L P, Thornton B F, Tian H, Tohjima Y, Tubiello F N, Tsuruta A, Viovy N, Voulgarakis A, Weber T S, van Weele M, van der Werf G R, Weiss R F, Worthy D, Wunch D, Yin Y, Yoshida Y, Zhang W X, Zhang Z, Zhao Y H, Zheng B, Zhu Q, Zhu Q, Zhuang Q L.2020.The global methane budget 2000-2017.Earth System Science Data, 12(3):1561-1623, https://doi.org/10.5194/essd-12-1561-2020.
Sawicka J E, Brüchert V.2017.Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments.Biogeosciences, 14(2):325-339, https://doi.org/10.5194/bg-14-325-2017.
Schmale O, Wäge J, Mohrholz V, Wasmund N, Gräwe U, Rehder G, Labrenz M, Loick-Wilde N.2018.The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea.Limnology and Oceanography, 63(1):412-430, https://doi.org/10.1002/lno.10640.
Shakhova N, Semiletov I, Leifer I, Sergienko V, Salyuk A, Kosmach D, Chernykh D, Stubbs C, Nicolsky D, Tumskoy V, Gustafsson Ö.2014.Ebullition and storm-induced methane release from the East Siberian Arctic Shelf.Nature Geoscience, 7(1):64-70, https://doi.org/10.1038/ngeo2007.
Sosa O A, Burrell T J, Wilson S T, Foreman R K, Karl D M, Repeta D J.2020.Phosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean.Limnology and Oceanography, 65(10):2443-2459, https://doi.org/10.1002/lno.11463.
Sosa O A, Repeta D J, Ferrón S, Bryant J A, Mende D R, Karl D M, DeLong E F.2017.Isolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter.Frontiers in Microbiology, 8:1786, https://doi.org/10.3389/fmicb.2017.01786.
Stawiarski B, Otto S, Thiel V, Gräwe U, Loick-Wilde N, Wittenborn A K, Schloemer S, Wäge, J, Rehder G, Labrenz M, Wasmund N, Schmale O.2019.Controls on zooplankton methane production in the central Baltic Sea.Biogeosciences, 16(1):1-16, https://doi.org/10.5194/bg-16-1-2019.
Su J L.1998.Circulation Dynamics of the China Seas:North of 18°N.In:The Sea:Vol.11.The Global Coastal Ocean:Reginal Studies and Synthesis.John Wiley & Sons Inc., New York.p.483-505.
Sun M S, Zhang G L, Ma X, Cao X P, Mao X Y, Li J, Ye W W, Liu S M.2018.Dissolved methane in the East China Sea:distribution, seasonal variation and emission.Marine Chemistry, 202:12-26, https://doi.org/10.1016/j.marchem.2018.03.001.
Tallant T C, Krzycki J A.1997.Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate.Journal of Bacteriology, 179(22):6902-6911, https://doi.org/10.1128/jb.179.22.6902-6911.1997.
Tang Y X, Lie H J, Cho C H, Lee J H.1997.The hydrographic condition in the northeastern East China Sea in summer.Journal of Oceanography of Huanghai & Bohai Seas,15(1):8-19. (in Chinese with English abstract)
Teikari J E, Fewer D P, Shrestha R, Hou S W, Leikoski N, Mäkelä M, Simojoki A, Hess W R, Sivonen K.2018.Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane.The ISME Journal, 12(6):1619-1630, https://doi.org/10.1038/s41396-018-0056-6.
Treude T, Niggemann J, Kallmeyer J, Wintersteller P, Schubert C J, Boetius A, Jørgensen B B.2005.Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin.Geochimica et Cosmochimica Acta, 69(11):2767-2779, https://doi.org/10.1016/j.gca.2005.01.002.
Valentine D L.2002.Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:a review.Antonie van Leeuwenhoek, 81(1):271-282, https://doi.org/10.1023/A:1020587206351.
van der Maarel M J E C, Hansen T A.1997.Dimethylsulfoniopropionate in anoxic intertidal sediments:a precursor of methanogenesis via dimethyl sulfide, methanethiol, and methiolpropionate.Marine Geology, 137(1-2):5-12, https://doi.org/10.1016/S0025-3227(96) 00074-6.
Visscher P T, Kiene R P, Taylor B F.1994.Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments.FEMS Microbiology Ecology, 14(2):179-189, https://doi.org/10.1111/j.1574-6941.1994.tb00104.x.
Wäge J, Schmale O, Labrenz M.2020.Quantification of methanogenic Archaea within Baltic Sea copepod faecal pellets.Marine Biology, 167(10):153, https://doi.org/10.1007/s00227-020-03759-x.
Wang Y C, Guo X Y, Zhao L, Zhang J.2019.Seasonal variations in nutrients and biogenic particles in the upper and lower layers of East China Sea Shelf and their export to adjacent seas.Progress in Oceanography, 176:102138, https://doi.org/10.1016/j.pocean.2019.102138.
Weber T, Wiseman N A, Kock A.2019.Global ocean methane emissions dominated by shallow coastal waters.Nature Communication, 10(1):4584, https://doi.org/10.1038/s41467-019-12541-7.
Webster R.2009.Statistics to support soil research and their presentation.European Journal of Soil Science, 52(2):331-340, https://doi.org/10.1046/j.1365-2389.2001.00383.x.
Yamamoto H, Fujimori T, Sato H, Ishikawa G, Kami K, Ohashi Y.2014.Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis.BMC Bioinformatics 15(1):1-9, https://doi.org/10.1186/1471-2105-15-51.
Yang D Z, Yin B S, Chai F, Feng X R, Xue H J, Gao G D, Yu F.2018.The onshore intrusion of Kuroshio subsurface water from February to July and a mechanism for the intrusion variation.Progress in Oceanography, 167:97-115, https://doi.org/10.1016/j.pocean.2018.08.004.
Yang G P, Jing W W, Kang Z Q, Zhang H H, Song G S.2008.Spatial variations of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and in the subsurface waters of the South China Sea during springtime.Marine Environmental Research, 65(1):85-97, https://doi.org/10.1016/j.marenvres.2007.09.002.
Yang G P, Zhang H H, Zhou L M, Yang J.2011.Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea.Continental Shelf Research, 31(13):1325-1335, https://doi.org/10.1016/j.csr.2011.05.001.
Yang J, Zhang G L, Zheng L X, Zhang F, Zhao J.2010.Seasonal variation of fluxes and distributions of dissolved methane in the North Yellow Sea.Continental Shelf Research, 30(2):187-192, https://doi.org/10.1016/j.csr.2009.10.016.
Ye W W, Wang X L, Zhang X H, Zhang G L.2020.Methane production in oxic seawater of the western North Pacific and its marginal seas.Limnology and Oceanography, 65(10):2352-2365, https://doi.org/10.1002/lno.11457.
Ye W W, Zhang G L, Zheng W J, Zhang H H, Wu Y.2019.Methane distributions and sea-to-air fluxes in the Pearl River Estuary and the northern South China Sea.Deep Sea Research Part II:Topical Studies in Oceanography, 167:34-45, https://doi.org/10.1016/j.dsr2.2019.06.016.
Ye W W, Zhang G L, Zhu Z Y, Huang D J, Han Y, Wang L, Sun M S.2016.Methane distribution and sea-to-air flux in the East China Sea during the summer of 2013:impact of hypoxia.Deep Sea Research Part II:Topical Studies in Oceanography, 124:74-83, https://doi.org/10.1016/j.dsr2.2015.01.008.
Zhai X, Li J L, Zhang H H, Tan D D, Yang G P.2019.Spatial distribution and biogeochemical cycling of dimethylated sulfur compounds and methane in the East China Sea during spring.Journal of Geophysical Research:Oceans, 124(2):1074-1090, https://doi.org/10.1029/2018JC014488.
Zhang G L, Zhang J, Kang Y B, Liu S M.2004.Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring.Journal of Geophysical Research:Oceans, 109(C7):C07011, https://doi.org/10.1029/2004JC002268.
Zhang G L, Zhang J, Liu S M, Ren J L, Xu J, Zhang F.2008a.Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area:riverine input, sediment release and atmospheric fluxes.Biogeochemistry, 91(1):71-84, https://doi.org/10.1007/s10533-008-9259-7.
Zhang G L, Zhang J, Ren J L, Li J B, Liu S M.2008b.Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer.Marine Chemistry, 110(1-2):42-55, https://doi.org/10.1016/j.marchem.2008.02.005.
Zhang J, Liu Q, Bai L L, Matsuno T.2018.Water mass analysis and contribution estimation using heavy rare earth elements:significance of Kuroshio intermediate water to Central East China Sea shelf water.Marine Chemistry, 204:172-180, https://doi.org/10.1016/j.marchem.2018.07.011.
Zhang J, Liu S M, Ren J L, Wu Y, Zhang G L.2007.Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and reevaluation of budgets for the East China Sea Shelf.Progress in Oceanography, 74(4):449-478, https://doi.org/10.1016/j.pocean.2007.04.019.
Zhao B, Yao P, Bianchi T S, Arellano A R, Wang X C, Yang J B, Su R G, Wang J P, Xu Y H, Huang X Y, Chen L, Ye J, Yu Z G.2018.The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas.Chemical Geology, 495:104-117, https://doi.org/10.1016/j.chemgeo.2018.08.012.
Zhou P, Song X X, Yuan Y Q, Wang W T, Chi L B, Cao X H, Yu Z M.2018.Intrusion of the Kuroshio Subsurface Water in the southern East China Sea and its variation in 2014 and 2015 traced by dissolved inorganic iodine species.Progress in Oceanography, 165:287-298, https://doi.org/10.1016/j.pocean.2018.06.011.
Zindler C, Bracher A, Marandino C A, Taylor B, Torrecilla E, Kock A, Bange H W.2013.Sulphur compounds, methane, and phytoplankton:interactions along a north-south transit in the western Pacific Ocean.Biogeosciences, 10(5):3297-3311, https://doi.org/10.5194/bg-10-3297-2013.
Copyright © Haiyang Xuebao