Cite this paper:
Di TIAN, Feng ZHOU, Wenyan ZHANG, Han ZHANG, Xiao MA, Xinyu GUO. Effects of dissolved oxygen and nutrients from the Kuroshio on hypoxia off the Changjiang River estuary[J]. Journal of Oceanology and Limnology, 2022, 40(2): 515-529

Effects of dissolved oxygen and nutrients from the Kuroshio on hypoxia off the Changjiang River estuary

Di TIAN1,2, Feng ZHOU1,2,3, Wenyan ZHANG4, Han ZHANG1,5, Xiao MA1, Xinyu GUO1,6
1 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
2 Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan 316022, China;
3 Ocean College, Zhejiang University, Zhoushan 316021, China;
4 Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany;
5 Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519082, China;
6 Center for Marine Environmental Study, Ehime University, Matsuyama 790-8577, Japan
Abstract:
The intrusion of the Kuroshio into the East China Sea (ECS) affects the development of hypoxia off the Changjiang (Yangtze) River estuary; however, quantitative analysis of its impacts is lacking. In this study, the Regional Ocean Modeling Systems (ROMS) model coupled with the Carbon, Silicate and Nitrogen Ecosystem (CoSiNE) model was used to investigate the relative importance of dissolved oxygen (DO) and different nutrients (silicate, nitrate, and phosphate) in the Kuroshio on hypoxia in the ECS. Results show that changes in DO concentrations in the Kuroshio modify the distribution and intensity of hypoxia through direct onshore transport by hydrodynamic processes. An increase in Kuroshio DO concentration by 25% or 50% would result in a decrease of the maximum hypoxia extent (MHE) in the ECS by 76% or 86%, respectively, while a 25% decrease in Kuroshio DO would increase the MHE by up to 219%. The contribution of DO in the Taiwan Strait is almost negligible. In contrast to Kuroshio DO, nutrients affect hypoxia in the ECS through onshore transport by hydrodynamic and biochemical processes. Changes in phosphate and nitrate concentrations by 25% in the Kuroshio would change the MHE by up to 30% and 18%, respectively, accompanied by apparent changes in surface chlorophyll-a concentrations. The effect of silicate on hypoxia is negligible because a 25% change in silicate concentrations in the Kuroshio would result in less than 1% change in the MHE. Our results reveal a hierarchical rank of importance for environmental variables in the Kuroshio (i.e., DO > phosphate > nitrate > silicate) in modifying the development of hypoxia in the ECS.
Key words:    hypoxia|Kuroshio|Changjiang River estuary|East China Sea|dissolved oxygen|nutrient   
Received: 2020-11-13   Revised:
Tools
PDF (11595 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Di TIAN
Articles by Feng ZHOU
Articles by Wenyan ZHANG
Articles by Han ZHANG
Articles by Xiao MA
Articles by Xinyu GUO
References:
Bianchi T S, DiMarco S F, Cowan J H Jr, Hetland R D, Chapman P, Day J W, Allison M A.2010.The science of hypoxia in the Northern Gulf of Mexico:a review.Science of the Total Environment, 408(7):1471-1484, https://doi.org/10.1016/j.scitotenv.2009.11.047.
Bopp L, Resplandy L, Untersee A, Le Mezo P, Kageyama M.2017.Ocean (de) oxygenation from the Last Glacial Maximum to the twenty-first century:insights from Earth System models.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 375(2102):20160323, https://doi.org/10.1098/rsta.2016.0323.
Breitburg D, Grégoire M, Isensee K.2018a.Global Ocean Oxygen Network 2018.The ocean is losing its breath:Declining oxygen in the world's ocean and coastal waters.IOC-UNESCO, IOC Technical Series, No.137, 40p.
Breitburg D, Levin L A, Oschlies A, Gregoire M, Chavez F P, Conley D J, Garcon V, Gilbert D, Gutierrez D, Isensee K, Jacinto G S, Limburg K E, Montes I, Naqvi S W A, Pitcher G C, Rabalais N N, Roman M R, Rose K A, Seibel B A, Telszewski M, Yasuhara M, Zhang J.2018b.Declining oxygen in the global ocean and coastal waters.Science, 359(6371):eaam7240, https://doi.org/10.1126/science.aam7240.
Chai F, Dugdale R C, Peng T H, Wilkerson F P, Barber R T.2002.One-dimensional ecosystem model of the equatorial Pacific upwelling system.Part I:model development and silicon and nitrogen cycle.Deep Sea Research Part II:Topical Studies in Oceanography, 49(13-14):2713-2745, https://doi.org/10.1016/s0967-0645(02) 00055-3.
Chen C C, Gong G C, Shiah F K.2007.Hypoxia in the East China Sea:one of the largest coastal low-oxygen areas in the world.Marine Environmental Research, 64(4):399-408, https://doi.org/10.1016/j.marenvres.2007.01.007.
Chen C T A, Wang S L.1999.Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf.Journal of Geophysical Research:Oceans, 104(C9):20675-20686, https://doi.org/10.1029/1999jc900055.
Chen D X.1992.Marine Atlas of Bohai Sea, Yellow Sea, East China Sea:hydrology.China Ocean Press, Beijing. (in Chinese)
da Silva A M, Young C C, Levitus S.1994.Atlas of Surface Marine Data 1994, vol 1.Algorithms and Procedures, NOAA Atlas NESDIS 6, US Dep of Comm, Washington DC.83p.
Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F.2011.The ERA-Interim reanalysis:configuration and performance of the data assimilation system.Quarterly Journal of the Royal Meteorological Society, 137(656):553-597, https://doi.org/10.1002/qj.828.
Diaz R J, Rosenberg R.2008.Spreading dead zones and consequences for marine ecosystems.Science, 321(5891):926-929, https://doi.org/10.1126/science.1156401.
Diaz R J.2001.Overview of Hypoxia around the World.Journal of Environmental Quality, 30(2):275-281, https://doi.org/10.2134/jeq2001.302275x.
Gilbert D, Rabalais N N, Díaz R J, Zhang J.2010.Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean.Biogeosciences, 7(7):2283-2296, https://doi.org/10.5194/bg-7-2283-2010.
Große F, Fennel K, Zhang H Y, Laurent A.2020.Quantifying the contributions of riverine vs.oceanic nitrogen to hypoxia in the East China Sea.Biogeosciences, 17(10):2701-2714, https://doi.org/10.5194/bg-17-2701-2020.
Gu H K.1980.The maximum value of dissolved oxygen in its vertical distribution in Yellow Sea.Acta Oceanologica Sinica, 2(2):70-80. (in Chinese with English abstract)
Guo X Y, Zhu X H, Wu Q S, Huang D J.2012.The Kuroshio nutrient stream and its temporal variation in the East China Sea.Journal of Geophysical Research:Oceans, 117(C1):C01026, https://doi.org/10.1029/2011jc007292.
Guo Y R, Rong Z R, Li B, Xu Z, Li P X, Li X D.2019.Physical processes causing the formation of hypoxia off the Changjiang estuary after Typhoon Chan-hom, 2015.Journal of Oceanology and Limnology, 37(1):1-17, https://doi.org/10.1007/s00343-019-7336-5.
Haidvogel D B, Arango H, Budgell W P, Cornuelle B D, Curchitser E, Di Lorenzo E, Fennel K, Geyer W R, Hermann A J, Lanerolle L, Levin J, McWilliams J C, Miller A J, Moore A M, Powell T M, Shchepetkin A F, Sherwood C R, Signell R P, Warner J C, Wilkin J.2008.Ocean forecasting in terrain-following coordinates:formulation and skill assessment of the Regional Ocean Modeling System.Journal of Computational Physics, 227(7):3595-3624, https://doi.org/10.1016/j.jcp.2007.06.016.
Keeling R F, Kortzinger A, Gruber N.2010.Ocean deoxygenation in a warming world.Annual Review of Marine Science, 2:199-229, https://doi.org/10.1146/annurev.marine.010908.163855.
Kelly K A, Thompson L, Cheng W, Metzger E J.2007.Evaluation of HYCOM in the Kuroshio Extension region using new metrics.Journal of Geophysical Research:Oceans, 112(C1):C01004, https://doi.org/10.1029/2006jc003614.
Levin L A, Ekau W, Gooday A J, Jorissen F, Middelburg J J, Naqvi S W A, Neira C, Rabalais N N, Zhang J.2009.Effects of natural and human-induced hypoxia on coastal benthos.Biogeosciences, 6(10):2063-2098, https://doi.org/10.5194/bg-6-2063-2009.
Li D J, Zhang J, Huang D J, Wu Y, Liang J.2002.Oxygen depletion off the Changjiang (Yangtze River) estuary.Science in China Series D:Earth Sciences, 45(12):1137-1126, https://doi.org/10.1360/02yd9110.
Li X G, Yu Z M, Song X X, Cao X H, Yuan Y Q.2011.The seasonal characteristics of dissolved oxygen distribution and hypoxia in the Changjiang estuary.Journal of Coastal Research, 27(6A):52-62, https://doi.org/10.2112/JCOASTRES-D-11-00013.1.
Liblik T, Wu Y J, Fan D D, Shang D H.2020.Wind-driven stratification patterns and dissolved oxygen depletion off the Changjiang (Yangtze) Estuary.Biogeosciences, 17(10):2875-2895, https://doi.org/10.5194/bg-17-2875-2020.
Lui H K, Chen C T A, Hou W P, Liau J M, Chou W C, Wang Y L, Wu C R, Lee J, Hsin Y C, Choi Y Y.2020.Intrusion of kuroshio helps to diminish coastal hypoxia in the coast of Northern South China Sea.Frontiers in Marine Science, 7:565952, https://doi.org/10.3389/fmars.2020.565952.
Luo X F, Wei H, Fan R F, Liu Z, Zhao L, Lu Y Y.2018.On influencing factors of hypoxia in waters adjacent to the Changjiang estuary.Continental Shelf Research, 152:1-13, https://doi.org/10.1016/j.csr.2017.10.004.
Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska M A, Bange H W, Hansen H P, Körtzinger A.2013.Future ocean acidification will be amplified by hypoxia in coastal habitats.Marine Biology, 160(8):1875-1888, https://doi.org/10.1007/s00227-012-1954-1.
Meng Q C, Xuan J L, Zhang W Y, Zhou F, Hao Q, Zhao Q, Schrum C.2020.Impact of submesoscale vertical advection on primary productivity in the Southern East China Sea.Journal of Geophysical Research:Biogeosciences, 125(8):e2019JG005540, https://doi.org/10.1029/2019JG005540.
Ni X B, Huang D J, Zeng D Y, Zhang T, Li H L, Chen J F.2016.The impact of wind mixing on the variation of bottom dissolved oxygen off the Changjiang Estuary during summer.Journal of Marine Systems, 154:122-130, https://doi.org/10.1016/j.jmarsys.2014.11.010.
Peng G, Zhang H M, Frank H P, Bidlot J R, Higaki M, Stevens S, Hankins W R.2013.Evaluation of various surface wind products with OceanSITES buoy measurements.Weather and Forecasting, 28(6):1281-1303, https://doi.org/10.1175/waf-d-12-00086.1.
Qian W, Dai M H, Xu M, Kao S j, Du C J, Liu J W, Wang H J, Guo L G, Wang L F.2017.Non-local drivers of the summer hypoxia in the East China Sea off the Changjiang Estuary.Estuarine, Coastal and Shelf Science, 198:393-399, https://doi.org/10.1016/j.ecss.2016.08.032.
Rabalais N N, Díaz R J, Levin L A, Turner R E, Gilbert D, Zhang J.2010.Dynamics and distribution of natural and human-caused hypoxia.Biogeosciences, 7(2):585-619, https://doi.org/10.5194/bg-7-585-2010.
Rabalais N N, Turner R E, Wiseman W J Jr.2002.Gulf of Mexico Hypoxia, A.K.A."The Dead Zone".Annual Review of Ecology and Systematics, 33:235-263, https://doi.org/10.1146/annurev.ecolsys.33.010802.150513.
Shchepetkin A F, McWilliams J C.2005.The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model.Ocean Modelling, 9(4):347-404, https://doi.org/10.1016/j.ocemod.2004.08.002.
Sugimoto R, Kasai A, Miyajima T, Fujita K.2009.Transport of oceanic nitrate from the continental shelf to the coastal basin in relation to the path of the Kuroshio.Continental Shelf Research, 29(14):1678-1688, https://doi.org/10.1016/j.csr.2009.05.013.
Tian D, Su J, Zhou F, Mayer B, Sein D, Zhang H, Huang D J, Pohlmann T.2019.Heat budget responses of the eastern China seas to global warming in a coupled atmosphereocean model.Climate Research, 79(2):109-126, https://doi.org/10.3354/cr01579.
Tian R C, Hu F X, Martin J M.1993.Summer Nutrient Fronts in the Changjiang (Yantze River) Estuary.Estuarine, Coastal and Shelf Science, 37(1):27-41, https://doi.org/10.1006/ecss.1993.1039.
Vaquer-Sunyer R, Duarte C M.2008.Thresholds of hypoxia for marine biodiversity.Proceedings of the National Academy of Sciences of the United States of America, 105(40):15452-15457, https://doi.org/10.1073/pnas.0803833105.
Wang B D, Wei Q S, Chen J F, Xie L P.2012.Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary.Marine Environmental Research, 77:1-5, https://doi.org/10.1016/j.marenvres.2011.12.007.
Wang B D.2009.Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary.Marine Environmental Research, 67(1):53-58, https://doi.org/10.1016/j.marenvres.2008.11.001.
Wang H J, Dai M H, Liu J W, Kao S J, Zhang C, Cai W J, Wang G Z, Qian W, Zhao M X, Sun Z Y.2016.EutrophicationDriven hypoxia in the East China Sea off the Changjiang Estuary.Environmental Science & Technology, 50(5):2255-2263, https://doi.org/10.1021/acs.est.5b06211.
Wei H, He Y C, Li Q J, Liu Z Y, Wang H T.2007.Summer hypoxia adjacent to the Changjiang Estuary.Journal of Marine Systems, 67(3-4):292-303, https://doi.org/10.1016/j.jmarsys.2006.04.014.
Wong G T F, Chao S Y, Li Y H, Shiah F K.2000.The Kuroshio edge exchange processes (KEEP) study-an introduction to hypotheses and highlights.Continental Shelf Research, 20(4-5):335-347, https://doi.org/10.1016/S0278-4343(99) 00075-8.
Wu C R, Wang Y L, Lin Y F, Chao S Y.2017.Intrusion of the Kuroshio into the South and East China Seas.Scientific Reports, 7(1):7895, https://doi.org/10.1038/s41598-017-08206-4.
Xiu P, Chai F.2011.Modeled biogeochemical responses to mesoscale eddies in the South China Sea.Journal of Geophysical Research, 116(C10):C10006, https://doi.org/10.1029/2010jc006800.
Xiu P, Chai F.2014.Connections between physical, optical and biogeochemical processes in the Pacific Ocean.Progress in Oceanography, 122:30-53, https://doi.org/10.1016/j.pocean.2013.11.008.
Xu L J, Yang D Z, Greenwood J, Feng X R, Gao G D, Qi J F, Cui X, Yin B S.2020.Riverine and oceanic nutrients govern different algal bloom domain near the Changjiang estuary in summer.Journal of Geophysical Research:Biogeosciences, 125(10):e2020JG005727, https://doi.org/10.1029/2020jg005727.
Yang D Z, Huang R X, Yin B S, Feng X R, Chen H Y, Qi J F, Xu L J, Shi Y L, Cui X, Gao G D, Benthuysen J A.2018.Topographic beta spiral and onshore intrusion of the kuroshio current.Geophysical Research Letters, 45(1):287-296, https://doi.org/10.1002/2017GL076614.
Yang D Z, Yin B S, Liu Z L, Bai T, Qi J F, Chen H Y.2012.Numerical study on the pattern and origins of Kuroshio branches in the bottom water of southern East China Sea in summer.Journal of Geophysical Research:Oceans, 117(C2):C02014, https://doi.org/10.1029/2011jc007528.
Yang D Z, Yin B S, Liu Z L, Feng X R.2011.Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer.Journal of Geophysical Research:Oceans, 116(C5):C05015, https://doi.org/10.1029/2010jc006777.
Zhang H M, Bates J J, Reynolds R W.2006.Assessment of composite global sampling:sea surface wind speed.Geophysical Research Letters, 33(17):L17714, https://doi.org/10.1029/2006gl027086.
Zhang H Y, Fennel K, Laurent A, Bian C.2020.A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea.Biogeosciences, 17(22):5745-5761, https://doi.org/10.5194/bg-17-5745-2020.
Zhang J, Gilbert D, Gooday A J, Levin L, Naqvi S W A, Middelburg J J, Scranton M, Ekau W, Peña A, Dewitte B, Oguz T, Monteiro P M S, Urban E, Rabalais N N, Ittekkot V, Kemp W M, Ulloa O, Elmgren R, Escobar-Briones E, Van der Plas A K.2010.Natural and human-induced hypoxia and consequences for coastal areas:synthesis and future development.Biogeosciences, 7(5):1443-1467, https://doi.org/10.5194/bg-7-1443-2010.
Zhang J, Liu S M, Ren J L, Wu Y, Zhang G L.2007.Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and reevaluation of budgets for the East China Sea Shelf.Progress in Oceanography, 74(4):449-478, https://doi.org/10.1016/j.pocean.2007.04.019.
Zhang W X, Wu H, Hetland R D, Zhu Z Y.2019a.On mechanisms controlling the seasonal hypoxia hot spots off the Changjiang River estuary.Journal of Geophysical Research:Oceans, 124(12):8683-8700, https://doi.org/10.1029/2019jc015322.
Zhang W X, Wu H, Zhu Z Y.2018.Transient hypoxia extent off changjiang river estuary due to mobile Changjiang River plume.Journal of Geophysical Research:Oceans, 123(12):9196-9211, https://doi.org/10.1029/2018jc014596.
Zhang W Y, Wirtz K, Daewel U, Wrede A, Kröncke I, Kuhn G, Neumann A, Meyer J, Ma M Y, Schrum C.2019b.The budget of macrobenthic reworked organic carbon:a modeling case study of the North Sea.Journal of Geophysical Research:Biogeosciences, 124(6):1446-1471, https://doi.org/10.1029/2019JG005109.
Zhang W Y, Wirtz K.2017.Mutual dependence between sedimentary organic carbon and infaunal macrobenthos resolved by mechanistic modeling.Journal of Geophysical Research:Biogeosciences, 122(10):2509-2526, https://doi.org/10.1002/2017JG003909.
Zhou F, Chai F, Huang D J, Wells M, Ma X, Meng Q C, Xue H J, Xuan J L, Wang P B, Ni X B, Zhao Q, Liu C G, Su J L, Li H L.2020.Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system:the Changjiang (Yangtze River) estuary.Frontiers in Marine Science, 7:259, https://doi.org/10.3389/fmars.2020.00259.
Zhou F, Chai F, Huang D J, Xue H J, Chen J F, Xiu P, Xuan J L, Lia J, Zeng D Y, Ni X B, Wang K.2017.Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE.Progress in Oceanography, 159:237-254, https://doi.org/10.1016/j.pocean.2017.10.008.
Zhou F, Xue H J, Huang D J, Xuan J L, Ni X B, Xiu P, Hao Q.2015.Cross-shelf exchange in the shelf of the East China Sea.Journal of Geophysical Research:Oceans, 120(3):1545-1572, https://doi.org/10.1002/2014JC010567.
Zhou M J, Shen Z L, Yu R C.2008.Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River.Continental Shelf Research, 28(12):1483-1489, https://doi.org/10.1016/j.csr.2007.02.009.
Zhu Z Y, Wu H, Liu S M, Wu Y, Huang D J, Zhang J, Zhang G S.2017.Hypoxia off the Changjiang (Yangtze River) estuary and in the adjacent East China Sea:quantitative approaches to estimating the tidal impact and nutrient regeneration.Marine Pollution Bulletin, 125(1-2):103-114, https://doi.org/10.1016/j.marpolbul.2017.07.029.
Zhu Z Y, Zhang J, Wu Y, Zhang Y Y, Lin J, Liu S M.2011.Hypoxia off the Changjiang (Yangtze River) Estuary:oxygen depletion and organic matter decomposition.Marine Chemistry, 125(1-4):108-116, https://doi.org/10.1016/j.marchem.2011.03.005.
Zuo J L, Song J M, Yuan H M, Li X G, Li N, Duan L Q.2019.Impact of Kuroshio on the dissolved oxygen in the East China Sea region.Journal of Oceanology and Limnology, 37(2):513-524, https://doi.org/10.1007/s00343-019-7389-5.
Copyright © Haiyang Xuebao