Cite this paper:
Jin SHA, Xiaoming LI, Xiaohai YAN. Relative contributions of temperature and salinity to steric sea level over the South China Sea[J]. Journal of Oceanology and Limnology, 2022, 40(2): 428-437

Relative contributions of temperature and salinity to steric sea level over the South China Sea

Jin SHA1,2, Xiaoming LI1,2, Xiaohai YAN3,4
1 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
2 Hainan Key Laboratory of Earth Observation, Sanya 502022, China;
3 Center for Remote Sensing, College of Earth, Ocean and Environment, University of Delaware, Newark 19711, DE, USA;
4 Joint Institute for Coastal Research and Management, University of Delaware/Xiamen University, USA/China
Abstract:
The relative contributions of surface temperature and salinity to steric sea-level variations are investigated using satellite observations and reanalysis datasets. By defining a contribution factor, the relative roles of thermal and haline steric height variations are quantified over the South China Sea (SCS). The thermosteric height dominates the steric sea level variation in the northern SCS deep basin, while the contribution of the halosteric height increases southward. Further investigation reveals that this transition is related to the meridional imbalance of surface heat flux and precipitation variations. The revealed steric constitution distribution is not confined to the surface but extends within the upper layer to approximately 50m depth, and then the thermosteric component dominates from the depth underneath. The results of this study clarify the steric sea level constitution over the SCS, benefit the understanding of sea-level variations at the regional scale, and may further facilitate multisensor remote sensing data mining studies.
Key words:    South China Sea (SCS)|steric height|steric constitution   
Received: 2021-02-16   Revised:
Tools
PDF (1854 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Jin SHA
Articles by Xiaoming LI
Articles by Xiaohai YAN
References:
Al Senafi F, Anis A, Menezes V.2019.Surface heat fluxes over the northern Arabian Gulf and the northern Red Sea:evaluation of ECMWF-ERA5 and NASA-MERRA2 reanalyses.Atmosphere, 10(9):504, https://doi.org/10.3390/atmos10090504.
Belonenko T V, Fedorov A M.2018.Steric level fluctuations and deep convection in the Labrador and Irminger Seas.Izvestiya, Atmospheric and Oceanic Physics, 54(9):1039-1049, https://doi.org/10.1134/S0001433818090086.
Belonenko T V, Koldunov A V.2019.Trends of steric sea level oscillations in the North Atlantic.Izvestiya, Atmospheric and Oceanic Physics, 55(9):1106-1113, https://doi.org/10.1134/S0001433819090081.
Carton J A, Chepurin G A, Chen L G.2018.SODA3:a new ocean climate reanalysis.Journal of Climate, 31(17):6967-6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
Carton J A, Penny S G, Kalnay E.2019.Temperature and salinity variability in the SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993-2015.Journal of Climate, 32(8):2277-2293, https://doi.org/10.1175/JCLI-D-18-0605.1.
Chambers D P, Tapley B D, Stewart R H.1997.Long-period ocean heat storage rates and basin-scale heat fluxes from TOPEX.Journal of Geophysical Research:Oceans, 102(C5):10525-10533, https://doi.org/10.1029/96JC03644.
Cheng X H, Qi Y Q.2010.On steric and mass-induced contributions to the annual sea-level variations in the South China Sea.Global and Planetary Change, 72(3):227-233, https://doi.org/10.1016/j.gloplacha.2010.05.002.
Cronin M F, McPhaden M J.1998.Upper ocean salinity balance in the western equatorial Pacific.Journal of Geophysical Research:Oceans, 103(C12):27567-27587, https://doi.org/10.1029/98JC02605.
De Deckker P.2016.The Indo-Pacific Warm Pool:critical to world oceanography and world climate.Geoscience Letter s, 3(1):20, https://doi.org/10.1186/s40562-016-0054-3.
Delcroix T, Hénin C.1991.Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean.Journal of Geophysical Research:Oceans, 96(C12):22135-22150, https://doi.org/10.1029/91JC02124.
Dong S F, Kelly K A.2004.Heat budget in the Gulf Stream region:the importance of heat storage and advection.Journal of Physical Oceanography, 34(5):1214-1231, https://doi.org/10.1175/1520-0485(2004) 034<1214:HBI TGS>2.0.CO;2.
Feng W, Zhong M, Xu H Z.2012.Sea level variations in the South China Sea inferred from satellite gravity, altimetry, and oceanographic data.Science China Earth Sciences, 55(10):1696-1701, https://doi.org/10.1007/s11430-012-4394-3.
Gill A E, Niller P P.1973.The theory of the seasonal variability in the ocean.Deep Sea Research and Oceanographic Abstracts, 20(2):141-177, https://doi.org/10.1016/0011-7471(73) 90049-1.
Hersbach H, Bell B, Berrisford P, Horányi A, Muñoz J, Nicolas J, Radu R, Schepers D, Simmons A, Soci C, Dee D.2019.Global Reanalysis:goodbye ERA-Interim, Hello ERA5.ECMWF Newsletter.https://doi.org/10.21957/vf291hehd7.
Hu J Y, Kawamura H, Hong H S, Qi Y Q.2000.A review on the currents in the South China Sea:seasonal circulation, South China Sea Warm Current and Kuroshio Intrusion.Journal of Oceanography, 56(6):607-624, https://doi.org/10.1023/A:1011117531252.
Klemas V.2011.Remote sensing of sea surface salinity:an overview with case studies.Journal of Coastal Research, 27(5):830-838, https://doi.org/10.2112/JCOASTRES-D-11-00060.1.
Liu Z Y, Yang H J, Liu Q Y.2001.Regional dynamics of seasonal variability in the South China Sea.Journal of Physical Oceanography, 31(1):272-284, https://doi.org/10.1175/1520-0485(2001) 031<0272:RDOSVI>2.0.CO;2.
Meissner T, Wentz F, Manaster A, Lindsley R.2019.NASA/RSS SMAP Salinity:version 4.0 Validated Release.RSS Technical Report 082219.Remote Sensing System, Santa Rosa, CA, USA.Available online at https://www.remss.com/missions/smap/salinity/.Accessed on Apr.13, 2021.
Qu T D, Mitsudera H, Yamagata T.2000.Intrusion of the North Pacific waters into the South China Sea.Journal of Geophysical Research:Oceans, 105(C3):6415-6424, https://doi.org/10.1029/1999JC900323.
Sha J, Jo Y H, Yan X H, Liu W T.2015.The modulation of the seasonal cross-shelf sea level variation by the cold pool in the Middle Atlantic Bight.Journal of Geophysical Research:Oceans, 120(11):7182-7194, https://doi.org/10.1002/2015JC011255.
Sha J, Li X M, Chen X E, Zhang T Y.2019.Satellite observations of wind wake and associated oceanic thermal responses:a case study of Hainan Island wind wake.Remote Sensing, 11(24):3036, https://doi.org/10.3390/rs11243036.
Sha J, Yan X H, Li X M.2017.The horizontal heat advection in the Middle Atlantic Bight and the cross-spectral interactions within the heat advection.Journal of Geophysical Research:Oceans, 122(7):5652-5665, https://doi.org/10.1002/2017JC013043.
Shaw P T, Chao S Y, Fu L L.1999.Sea surface height variations in the South China Sea from satellite altimetry.Oceanologica Acta, 22(1):1-17, https://doi.org/10.1016/S0399-1784(99) 80028-0.
Stevenson J W, Niiler P P.1983.Upper ocean heat budget during the Hawaii-to-Tahiti Shuttle Experiment.Journal of Physical Oceanography, 13(10):1894-1907, https://doi.org/10.1175/1520-0485(1983) 013<1894:UOHBDT> 2.0.CO;2.
Su H, Zhang H J, Geng X P, Qin T, Lu W F, Yan X H.2020.OPEN:a new estimation of global ocean heat content for upper 2000 meters from remote sensing data.Remote Sensing, 12(14):2294, https://doi.org/10.3390/rs12142294.
Su J L.2004.Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary.Continental Shelf Research, 24(16):1745-1760, https://doi.org/10.1016/j.csr.2004.06.005.
Welander P.1957.Wind action on a shallow sea:some generalizations of Ekman's theory.Tellus, 9(1):45-52, https://doi.org/10.1111/j.2153-3490.1957.tb01852.x.
Weller E, Min S K, Cai W J, Zwiers F W, Kim Y H, Lee D.2016.Human-caused Indo-Pacific warm pool expansion.Science Advances, 2(7):e1501719, https://doi.org/10.1126/sciadv.1501719.
Wu Q R, Zhang X B, Church J A, Hu J Y.2017.Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era.Journal of Geophysical Research:Oceans, 122(3):1862-1881, https://doi.org/10.1002/2016JC012345.
Xie S P, Xu H M, Saji N H, Wang Y Q, Liu W T.2006.Role of narrow mountains in large-scale organization of Asian monsoon convection.Journal of Climate, 19(14):3420-3429, https://doi.org/10.1175/JCLI3777.1.
Xue H J, Chai F, Pettigrew N, Xu D Y, Shi M C, Xu J P.2004.Kuroshio intrusion and the circulation in the South China Sea.Journal of Geophysical Research:Oceans, 109(C2):C02017, https://doi.org/10.1029/2002JC001724.
Yan X H, Ho C R, Zheng Q A, Klemas V.1992.Temperature and Size Variabilities of the Western Pacific Warm Pool.Science, 258(5088):1643-1645, https://doi.org/10.1126/science.258.5088.1643.
Yan X H, Jo Y H, Liu W T, He M X.2006.A new study of the Mediterranean outflow, air-sea interactions, and meddies using multisensor data.JournalofPhysicalOceanography, 36(4):691-710, https://doi.org/10.1175/JPO2873.1.
Yan X H, Pan J Y, Jo Y H, He M X, Liu W T, Jiang L D.2004.Role of winds in estimation of ocean heat storage anomaly using satellite data.Journal of Geophysical Research:Oceans, 109(C3):C03041, https://doi.org/10.1029/2003JC002202.
Yang H J, Liu Q Y, Jia X J.1999.On the upper oceanic heat budget in the South China Sea:annual cycle.Advances in Atmospheric Sciences, 16(4):619-629, https://doi.org/10.1007/s00376-999-0036-x.
Zeng L L, Chassignet E P, Schmitt R W, Xu X B, Wang D X.2018.Salinification in the South China Sea since late 2012:a reversal of the freshening since the 1990s.Geophysical Research Letters, 45(6):2744-2751, https://doi.org/10.1002/2017GL076574.
Zeng L L, Wang D X, Xiu P, Shu Y Q, Wang Q, Chen J.2016.Decadal variation and trends in subsurface salinity from 1960 to 2012 in the northern South China Sea.Geophysical Research Letters, 43(23):12181-12189, https://doi.org/10.1002/2016GL071439.
Copyright © Haiyang Xuebao