Cite this paper:
Bo ZHAO, Zhenhua XU, Qun LI, Wenjia MIN, Yang WANG, Baoshu YIN. The characteristics of spontaneous near-inertial wave generation from an anticyclonic mesoscale eddy[J]. Journal of Oceanology and Limnology, 2022, 40(2): 413-427

The characteristics of spontaneous near-inertial wave generation from an anticyclonic mesoscale eddy

Bo ZHAO1,3,4, Zhenhua XU1,2,3,4,5, Qun LI6, Wenjia MIN1,3,4, Yang WANG1,3,4, Baoshu YIN1,2,3,4,5
1 CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China;
2 Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
5 CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
6 Polar Research Institute of China, Shanghai 200136, China
Abstract:
The generation and propagation characteristics of near-inertial waves (NIWs) generated spontaneously from a quasi-geostrophic anticyclonic mesoscale eddy in a rotating and stratified fluid were investigated by three-dimensional numerical modeling. NIWs are generated over a long time interval as a forced response to balanced baroclinic mesoscale eddies. For such eddies, NIW generation from balanced flow is an inevitable result as the evolution of eddies. Moreover, the baroclinicity of mesoscale eddies is an essential condition for this NIW generation mechanism. The spontaneously generated NIWs radiate horizontally toward the eddy center and propagate upward in vertical direction. The forcing of the NIWs moves downward along the eddy axis from the location of maximum temperature anomaly of the mesoscale eddy. The moving speed of the forcing is independent on the balanced mesoscale eddies but is determined by the ratio of buoyancy to inertial frequency. When the forcing reaches the bottom of the mesoscale eddy, the spontaneous NIW generation process terminates. NIW intensity in this spontaneous generation process is strengthened with the increase of the Rossby and Froude numbers. Further research to gain a solid understanding of the role of the Rossby and Froude numbers is necessary for the parameterization of spontaneous NIW generation from quasi-geostrophic mesoscale eddies in general circulation model.
Key words:    near-inertial waves (NIWs)|anticyclonic mesoscale eddy|spontaneous generation   
Received: 2020-10-19   Revised:
Tools
PDF (2338 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Bo ZHAO
Articles by Zhenhua XU
Articles by Qun LI
Articles by Wenjia MIN
Articles by Yang WANG
Articles by Baoshu YIN
References:
Alford M H, MacKinnon J A, Simmons H L, Nash J D.2016.Near-inertial internal gravity waves in the ocean.Annual Review of Marine Science, 8:95-123, https://doi.org/10.1146/annurev-marine-010814-015746.
Alford M H, Shcherbina A Y, Gregg M C.2013.Observations of near-inertial internal gravity waves radiating from a frontal jet.Journal of Physical Oceanography, 43(6):1225-1239, https://doi.org/10.1175/JPO-D-12-0146.1.
Aspden J M, Vanneste J.2009.Elliptical instability of a rapidly rotating, strongly stratified fluid.Physics of Fluids, 21(7):074104, https://doi.org/10.1063/1.3177354.
Bell T H.1975.Lee waves in stratified flows with simple harmonic time dependence.Journal of Fluid Mechanics, 67(4):705-722, https://doi.org/10.1017/S0022112075000560.
Brearley J A, Sheen K L, Garabato A C N, Smeed D A, Waterman S.2013.Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean.Journal of Physical Oceanography, 43(11):2288-2308, https://doi.org/10.1175/JPO-D-12-0222.1.
Bühler O, McIntyre E.2005.Wave capture and wave-vortex duality.Journal of Fluid Mechanics, 534:67-95, https://doi.org/10.1017/S0022112005004374.
Capet X, McWilliams J C, Molemaker M J, Shchepetkin A F.2008.Mesoscale to submesoscale transition in the California current system.Part II:Frontal Processes.Journal of Physical Oceanography, 38(1):44-64, https://doi.org/10.1175/2007JPO3672.1.
Chang H, Xu Z H, Yin B S, Hou Y J, Liu Y H, Li D L, Wang Y, Cao S S, Liu A K.2019.Generation and propagation of M 2 internal tides modulated by the Kuroshio northeast of Taiwan.Journal of Geophysical Research:Oceans, 124(4):2728-2749, https://doi.org/10.1029/2018jc014228.
Charney J G.1971.Geostrophic turbulence.Journal of the Atmospheric Sciences, 28(6):1087-1095, https://doi.org/10.1175/1520-0469(1971) 028<1087:GT>2.0.CO;2.
Chelton D B, Schlax M G, Samelson R M.2011.Global observations of nonlinear mesoscale eddies.Progress in Oceanography, 91(2):167-216, https://doi.org/10.1016/j.pocean.2011.01.002.
Danioux E, Vanneste J, Klein P, Sasaki H.2012.Spontaneous inertia-gravity-wave generation by surface-intensified turbulence.Journal of Fluid Mechanics, 699:153-173, https://doi.org/10.1017/jfm.2012.90.
Early J J, Samelson R M, Chelton D B.2011.The evolution and propagation of quasigeostrophic ocean eddies.Journal of Physical Oceanography, 41(8):1535-1555, https://doi.org/10.1175/2011JPO4601.1.
Ferrari R, Wunsch C.2009.Ocean circulation kinetic energy:reservoirs, sources, and sinks.Annual Review of Fluid Mechanics, 41:253-282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.
Ford R.1994.Gravity wave radiation from vortex trains in rotating shallow water.Journal of Fluid Mechanics, 281:81-118, https://doi.org/10.1017/S0022112094003046.
Garrett C.2001.What is the "near-inertial" band and why is it different from the rest of the internal wave spectrum?Journal of Physical Oceanography, 31(4):962-971, https://doi.org/10.1175/1520-0485(2001) 031<0962:WIT NIB>2.0.CO;2.
Gille S T, Yale M M, Sandwell D T.2000.Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry.Geophysical Research Letters, 27(9):1251-1254, https://doi.org/10.1029/1999GL007003.
Haidvogel D B, Held I M.1980.Homogeneous quasigeostrophic turbulence driven by a uniform temperature gradient.Journal of the Atmospheric Sciences, 37(12):2644-2660, https://doi.org/10.1175/1520-0469(1980) 037<2644:HQGTDB>2.0.CO;2.
Hao Z J, Xu Z H, Feng M, Li Q, Yin B S.2021.Spatiotemporal variability of mesoscale eddies in the Indonesian Seas.Remote Sensing, 13(5):1017, https://doi.org/10.3390/rs13051017.
Hou H Q, Xie Q, Xue H J, Shu Y Q, Nan F, Yin Y Q, Yu F.2019.Formation of an anticyclonic eddy and the mechanism involved:a case study using cruise data from the northern South China Sea.Journal of Oceanology and Limnology, 37(5):1481-1494, https://doi.org/10.1007/s00343-019-8275-x.
Hyun K H, Hogan P J.2008.Topographic effects on the anticyclonic vortex evolution:a modeling study.Continental Shelf Research, 28(10-11):1246-1260, https://doi.org/10.1016/j.csr.2008.02.011.
Jing Z, Chang P, DiMarco S F, Wu L X.2018.Observed energy exchange between low-frequency flows and internal waves in the Gulf of Mexico.Journal of Physical Oceanography, 48(4):995-1008, https://doi.org/10.1175/JPO-D-17-0263.1.
Kelly S M, Lermusiaux P F J, Duda T F, Haley P J Jr.2016.A coupled-mode shallow-water model for tidal analysis:internal tide reflection and refraction by the Gulf Stream.Journal of Physical Oceanography, 46(12):3661-3679, https://doi.org/10.1175/JPO-D-16-0018.1.
Kunze E.1985.Near-Inertial wave propagation in geostrophic shear.Journal of Physical Oceanography, 15:544-565, https://doi.org/10.1175/1520-0485(1985) 015<0544:NIW PIG>2.0.CO;2.
Lelong M P, Cuypers Y, Bouruet-Aubertot P.2020.NearInertial energy propagation inside a Mediterranean anticyclonic eddy.Journal of Physical Oceanography, 50(8):2271-2288, https://doi.org/10.1175/JPO-D-19-0211.1.
Li B T, Cao A Z, Lü X Q.2018.Observations of near-inertial waves induced by parametric subharmonic instability.Journal of Oceanology and Limnology, 36(3):641-650, https://doi.org/10.1007/s00343-018-6307-6.
McWilliams J C, Yavneh I.1998.Fluctuation growth and instability associated with a singularity of the balance equations.Physics of Fluids, 10(10):2587-2596, https://doi.org/10.1063/1.869772.
Molemaker M J, McWilliams J C, Yavneh I.2005.Baroclinic instability and loss of balance.Journal of Physical Oceanography, 35(9):1505-1517, https://doi.org/10.1175/JPO2770.1.
Munk W, Wunsch C.1998.Abyssal recipes II:energetics of tidal and wind mixing.Deep Sea Research Part I:Oceanographic Research Papers, 45(12):1977-2010, https://doi.org/10.1016/S0967-0637(98) 00070-3.
Nagai T, Tandon A, Kunze E, Mahadevan A.2015.Spontaneous generation of near-inertial waves by the Kuroshio Front.Journal of Physical Oceanography, 45(9):2381-2406, https://doi.org/10.1175/JPO-D-14-0086.1.
Nikurashin M, Ferrari R.2010.Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography:theory.Journal of Physical Oceanography, 40(5):1055-1074, https://doi.org/10.1175/2009JPO4199.1.
Nikurashin M, Vallis G K, Adcroft A.2013.Routes to energy dissipation for geostrophic flows in the Southern Ocean.Nature Geoscience, 6(1):48-51, https://doi.org/10.1038/ngeo1657.
Pallàs-Sanz E, Viúdez Á.2008.Spontaneous generation of inertia-gravity waves during the merging of two baroclinic anticyclones.Journal of Physical Oceanography, 38(1):213-234, https://doi.org/10.1175/2007JPO3716.1.
Scott R B, Wang F M.2005.Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry.Journal of Physical Oceanography, 35(9):1650-1666, https://doi.org/10.1175/JPO2771.1.
Smith K S, Vallis G K.2001.The scales and equilibration of midocean eddies:freely evolving flow.Journal of Physical Oceanography, 31(2):554-571, https://doi.org/10.1175/1520-0485(2001) 031<0554:TSAEOM>2.0.CO;2.
Smith S G L, Young W R.2002.Conversion of the barotropic tide.Journal of Physical Oceanography, 32(5):1554-1566, https://doi.org/10.1175/1520-0485(2002) 032<1554:COTBT>2.0.CO;2.
Snyder C, Muraki D J, Plougonven R, Zhang F Q.2007.Inertia-gravity waves generated within a dipole vortex.Journal of the Atmospheric Sciences, 64(12):4417-4431, https://doi.org/10.1175/2007JAS2351.1.
Snyder C, Plougonven R, Muraki D J.2009.Mechanisms for spontaneous gravity wave generation within a dipole vortex.Journal of the Atmospheric Sciences, 66(11):3464-3478, https://doi.org/10.1175/2009JAS3147.1.
Sugimoto N, Ishioka K, Kobayashi H, Shimomura Y.2015.Cyclone-anticyclone asymmetry in gravity wave radiation from a co-rotating vortex pair in rotating shallow water.Journal of Fluid Mechanics, 772:80-106, https://doi.org/10.1017/jfm.2015.209.
Vanneste J, Yavneh I.2004.Exponentially small inertia-gravity waves and the breakdown of quasigeostrophic balance.Journal of the Atmospheric Sciences, 61(2):211-223, https://doi.org/10.1175/1520-0469(2004) 061<0211:ESI WAT>2.0.CO;2.
Vanneste J.2013.Balance and spontaneous wave generation in geophysical flows.Annual Review of Fluid Mechanics, 45:147-172, https://doi.org/10.1146/annurev-fluid-011212-140730.
Wang G H, Su J L, Chu P C.2003.Mesoscale eddies in the South China Sea observed with altimeter data.Geophysical Research Letters, 30(21):2121, https://doi.org/10.1029/2003GL018532.
Wang Y, Xu Z H, Yin, B S, Hou Y J, Chang H.2018.Long-range radiation and interference pattern of multisource M2internal tides in the Philippine Sea.Journal of Geophysical Research:Oceans, 123(8):5091-5112, https://doi.org/10.1029/2018JC013910.
Warn T, Bokhove O, Shepherd T G, Vallis G K.1995.Rossby number expansions, slaving principles, and balance dynamics.Quarterly Journal of the Royal Meteorological Society, 121(523):723-739, https://doi.org/10.1002/qj.49712152313.
Warn T.1997.Nonlinear balance and quasi-geostrophic sets.Atmosphere-Ocean, 35(2):135-145, https://doi.org/10.10 80/07055900.1997.9649588.
Watson K M.1985.Interaction between internal waves and mesoscale flows.Journal of Physical Oceanography, 15(10):1296-1311, https://doi.org/10.1175/1520-0485(1985) 015<1296:IBIWAM>2.0.CO;2.
Williams P D, Haine T W N, Read P L.2008.Inertia-gravity waves emitted from balanced flow:observations, properties, and consequences.Journal of the Atmospheric Sciences, 65(11):3543-3556, https://doi.org/10.1175/2008JAS2480.1.
Wunsch C, Ferrari R.2004.Vertical mixing, energy, and the general circulation of the oceans.Annual Review of Fluid Mechanics, 36:281-314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.
Xu A Q, Yu F, Nan F, Ren Q.2020.Characteristics of subsurface mesoscale eddies in the northwestern tropical Pacific Ocean from an eddy-resolving model.Journal of Oceanology and Limnology, 38(5):1421-1434, https://doi.org/10.1007/s00343-020-9313-4.
Xu Z H, Liu K, Yin B S, Zhao Z X, Wang Y, Li Q.2016.Longrange propagation and associated variability of internal tides in the South China Sea.Journal of Geophysical Research:Oceans, 121(11):8268-8286, https://doi.org/10.1002/2016JC012105.
Xu Z H, Wang Y, Liu Z, McWilliams J C, Gan J P.2021.Insight into the dynamics of the radiating internal tide associated with the Kuroshio Current.Journal of Geophysical Research:Oceans, 126(6):e2020JC017018, https://doi.org/10.1029/2020JC017018.
Xu Z H, Yin B S, Hou Y J, Liu A K.2014.Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait.Journal of Marine Systems, 134:101-112, https://doi.org/10.1016/j.jmarsys.2014.03.002.
Xu Z H, Yin B S, Hou Y J, Xu Y S.2013.Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea.Journal of Geophysical Research:Oceans, 118(1):197-211, https://doi.org/10.1029/2012JC008212.
Yang S M, Xing J X, Chen D Y, Chen S L.2017.A modelling study of eddy-splitting by an island/seamount.Ocean Science, 13(5):837-849, https://doi.org/10.5194/os-13-837-2017.
Zhai X M, Greatbatch R J, Zhao J.2005.Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model.Geophysical Research Letters, 32(18):L18602, https://doi.org/10.1029/2005GL023643.
Zhang Z G, Zhang Y, Wang W, Hang R X.2013.Universal structure of mesoscale eddies in the ocean.Geophysical Research Letters, 40(14):3677-3681, https://doi.org/10.1002/grl.50736.
Zhang Z W, Tian J W, Qiu B, Zhao W, Chang P, Wu D X, Wan X Q.2016.Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea.Scientific Reports, 6(1):24349, https://doi.org/10.1038/srep24349.
Zhao B, Xu Z H, Li Q, Wang Y, Yin B S.2021a.Transient generation of spiral inertia-gravity waves from a geostrophic vortex.Physics of Fluids, 33(3):032119, https://doi.org/10.1063/5.0039786.
Zhao C, Xu Z H, Robertson R, Li Q, Wang Y, Yin B S.2021b.The three-dimensional internal tide radiation and dissipation in the Mariana Arc-Trench system.Journal of Geophysical Research:Oceans, 126(5):e2020JC016502, https://doi.org/10.1029/2020JC016502.
Copyright © Haiyang Xuebao