Cite this paper:
Chenjing SHANG, Changrong LIANG, Guiying CHEN, Yongli GAO. The influence of turbulent mixing on the subsurface chlorophyll maximum layer in the northern South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2167-2180

The influence of turbulent mixing on the subsurface chlorophyll maximum layer in the northern South China Sea

Chenjing SHANG1, Changrong LIANG2,3, Guiying CHEN2,3, Yongli GAO4
1 Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China;
2 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3 Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China;
4 Equipment Public Service Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Abstract:
We present observations from deployments of turbulent microstructure instrument and CTD package in the northern South China Sea from April to May 2010. From them we determined the turbulent mixing (dissipation rate ε and diapycnal diffusivity κ), nutrients (phosphate, nitrate, and nitrite), nutrient fluxes, and chlorophyll a in two transects (A and B). Transect A was located in the region where turbulent mixing in the upper 100 m was weak (κ~10-6–10-4 m2/s). Transect B was located in the region where the turbulent mixing in the upper 100 m was strong (κ~10-5–10-3 m2/s) due to the influence of internal waves originating from the Luzon Strait and water intrusion from the Western Pacific. In both transects, there was a thin subsurface chlorophyll maximum layer (SCML) (>0.25 mg/m3) nested in the upper 100 m. The observations indicate that the effects of turbulent mixing on the distributions of nutrients and chlorophyll a were different in the two transects. In the transect A with weak turbulent mixing, nutrient fluxes induced by turbulent mixing transported nutrients to the SCML but not to the upper water. Nutrients were sufficient to support a local SCML phytoplankton population and the SCML remained compact. In the transect B with strong turbulent mixing, nutrient fluxes induced by turbulent mixing transported nutrients not only to the SCML but also to the upper water, which scatters the nutrients in the water column and diffuses the SCML.
Key words:    turbulent mixing|diapycnal diffusivity|nutrients|nutrient flux|chlorophyll a   
Received: 2020-08-21   Revised: 2020-10-09
Tools
PDF (19539 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Chenjing SHANG
Articles by Changrong LIANG
Articles by Guiying CHEN
Articles by Yongli GAO
References:
Alford M H, Peacock T, MacKinnon J A, Nash J D, Buijsman M C, Centurioni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, St Laurent L C, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550):65-69, https://doi.org/10.1038/nature14399.
Cullen J J. 2015. Subsurface chlorophyll maximum layers:enduring enigma or mystery solved? Annual Review of Marine Science, 7:207-239, https://doi.org/10.1146/annurev-marine-010213-135111.
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2):183-204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.
Gan J P, Lu Z M, Dai M H, Cheung A Y Y, Liu H B, Harrison P. 2010. Biological response to intensified upwelling and to a river plume in the northeastern South China Sea:a modeling study. Journal of Geophysical Research:Oceans, 115(C9):C09001, https://doi.org/10.1029/2009JC005569.
Gong X, Shi J, Gao H W. 2014. Modeling seasonal variations of subsurface chlorophyll maximum in South China Sea. Journal of Ocean University of China, 13(4):561-571, https://doi.org/10.1007/s11802-014-2060-4.
Gregg M C, D'Asaro E A, Riley J J, Kunze E. 2018. Mixing efficiency in the ocean. Annual Review of Marine Science, 10:443-473, https://doi.org/10.1146/annurev-marine-121916-063643.
Hales B, Hebert D, Marra J. 2009. Turbulent supply of nutrients to phytoplankton at the New England shelf break front. Journal of Geophysical Research:Oceans, 114(C5):C05010, https://doi.org/10.1029/2008JC005011.
Han A Q, Dai M H, Gan J P, Kao S J, Zhao X Z, Jan S, Li Q, Lin H, Chen C T A, Wang L, Hu J Y, Wang L F, Gong F. 2013. Inter-shelf nutrient transport from the East China Sea as a major nutrient source supporting winter primary production on the northeast South China Sea shelf. Biogeosciences, 10(12):8159-8170, https://doi.org/10.5194/bg-10-8159-2013.
Hu Z F, Tan Y H, Song X Y, Zhou L B, Lian X P, Huang L M, He Y H. 2014. Influence of mesoscale eddies on primary production in the South China Sea during spring intermonsoon period. Acta Oceanologica Sinica, 33(3):118-128, https://doi.org/10.1007/s13131-014-0431-8.
Huisman J, Thi N N P, Karl D M, Sommeijer B. 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 439(7074):322-325, https://doi.org/10.1038/nature04245.
Kirkwood D S, Aminot A, Carlberg S R. 1996. The 1994 quasimeme laboratory performance study:nutrients in seawater and standard solutions. Marine Pollution Bulletin, 32(8-9):640-645, https://doi.org/10.1016/0025-326X(96)00076-8.
Kononen K, Hällfors S, Kokkonen M, Kuosa H, Laanemets J, Pavelson J, Autio R. 1998. Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea. Limnology and Oceanography, 43(6):1089-1106, https://doi.org/10.4319/lo.1998.43.6.1089.
Ledwell J R, McGillicuddy D J Jr, Anderson L A. 2008. Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 55(10-13):1139-1160, https://doi.org/10.1016/j.dsr2.2008.02.005.
Li G, Lin Q, Ni G Y, Shen P P, Fan Y Z, Huang L M, Tan Y H. 2012. Vertical patterns of early summer chlorophyll a concentration in the Indian Ocean with special reference to the variation of deep chlorophyll maximum. Journal of Marine Biology, 2012:801248, https://doi.org/10.1155/2012/801248.
Li Q P, Dong Y, Wang Y. 2016. Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the northeastern South China Sea. Biogeosciences, 13(2):455-466, https://doi.org/10.5194/bg-13-455-2016.
Liang C R, Shang X D, Qi Y F, Chen G Y, Yu L H. 2019. Enhanced Diapycnal mixing between water masses in the Western Equatorial Pacific. Journal of Geophysical Research:Oceans, 124(11):8102-8115, https://doi.org/10.1029/2019JC015463.
Liu K K, Chao S Y, Shaw P T, Gong G C, Chen C C, Tang T Y. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea:observations and a numerical study. Deep Sea Research Part I:Oceanographic Research Papers, 49(8):1387-1412, https://doi.org/10.1016/S0967-0637(02)00035-3.
Liu Z Y, Lozovatsky I. 2012. Upper pycnocline turbulence in the northern South China Sea. Chinese Science Bulletin, 57(18):2302-2306, https://doi.org/10.1007/s11434-012-5137-8.
Lu Z M, Gan J P, Dai M H, Cheung A Y Y. 2010. The influence of coastal upwelling and a river plume on the subsurface chlorophyll maximum over the shelf of the northeastern South China Sea. Journal of Marine Systems, 82(1-2):35-46, https://doi.org/10.1016/j.jmarsys.2010.03.002.
MacIntyre S, Jellison R. 2001. Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. Hydrobiologia, 466(1-3):13-29, https://doi.org/10.1023/A:1014563914112.
MacKinnon J A, Gregg M C. 2003. Mixing on the late-summer New England shelf-Solibores, shear, and stratification. Journal of Physical Oceanography, 33(7):1476-1492, https://doi.org/10.1175/1520-0485(2003)033.
MacKinnon J A, Gregg M C. 2005. Spring mixing:turbulence and internal waves during restratification on the New England shelf. Journal of Physical Oceanography, 35(12):2425-2443, https://doi.org/10.1175/JPO2821.1.
Nasmyth P W. 1970. Oceanic Turbulence. University of British Columbia, Vancouver. Oakey N S. 1982. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. Journal of Physical Oceanography, 12(3):256-271, https://doi.org/10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.
Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1):83-89, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.
Polzin K L, Oakey N S, Toole J M, Schmitt R W. 1996. Fine structure and microstructure characteristics across the northwest Atlantic Subtropical Front. Journal of Geophysical Research:Oceans, 101(C6):14111-14121, https://doi.org/10.1029/96JC01020.
Polzin K. 1996. Statistics of the Richardson number:mixing models and finestructure. Journal of Physical Oceanography, 26(8):1409-1425, https://doi.org/10.1175/1520-0485(1996)026<1409:SOTRNM>2.0.CO;2.
Qu T D, Mitsudera H, Yamagata T. 2000. Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research:Oceans, 105(C3):6415-6424, https://doi.org/10.1029/1999JC900323.
Ramp S R, Tang T Y, Duda T F, Lynch J F, Liu A K, Chiu C S, Bahr F L, Kim H R, Yang Y J. 2004. Internal solitons in the northeastern South China Sea. Part I:sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4):1157-1181, https://doi.org/10.1109/JOE.2004.840839.
Schafstall J, Dengler M, Brandt P, Bange H. 2010. Tidalinduced mixing and diapycnal nutrient fluxes in the Mauritanian upwelling region. Journal of Geophysical Research:Oceans, 115(C10):C10014, https://doi.org/10.1029/2009JC005940.
Shang X D, Liang C R, Chen G Y. 2017. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Science, 13(3):503-519, https://doi.org/10.5194/os-13-503-2017.
Sharples J, Tweddle J F, Green J A M, Palmer M R, Kim Y N, Hickman A E, Holligan P M, Moore C M, Rippeth T P, Simpson J H, Krivtsov V. 2007. Spring-neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnology and Oceanography, 52(5):1735-1747, https://doi.org/10.4319/lo.2007.52.5.1735.
Shaw P T. 1991. The Seasonal variation of the intrusion of the Philippine sea water into the South China Sea. Journal of Geophysical Research:Oceans, 96(C1):821-827, https://doi.org/10.1029/90JC02367.
St. Laurent L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters, 35(23):L23615, https://doi.org/10.1029/2008GL035520.
Taguchi S. 1980. Phytoplankton photosynthesis in the subsurface chlorophyll-maximum layer of the tropical North Pacific Ocean. Journal of Experimental Marine Biology and Ecology, 43(1):87-98, https://doi.org/10.1016/0022-0981(80)90148-3.
Tanaka T, Yasuda I, Kuma K, Nishioka J. 2012. Vertical turbulent iron flux sustains the Green Belt along the shelf break in the southeastern Bering Sea. Geophysical Research Letters, 39(8):L08603, https://doi.org/10.1029/2012GL051164.
Tian J W, Yang Q X, Zhao W. 2009. Enhanced Diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12):3191-3203, https://doi.org/10.1175/2009JPO3899.1.
Tweddle J F, Sharples J, Palmer M R, Davidson K, McNeill S. 2013. Enhanced nutrient fluxes at the shelf sea seasonal thermocline caused by stratified flow over a bank. Progress in Oceanography, 117:37-47, https://doi.org/10.1016/j.pocean.2013.06.018.
Vandevelde T, Legendre L, Therriault J C, Demers S, Bah A. 1987. Subsurface chlorophyll maximum and hydrodynamics of the water column. Journal of Marine Research, 45(2):377-396, https://doi.org/10.1357/002224087788401151.
Wang J J, Tang D L. 2014. Phytoplankton patchiness during spring intermonsoon in western coast of South China Sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 101:120-128, https://doi.org/10.1016/j.dsr2.2013.09.020.
Wang Z K, Goodman L. 2010. The evolution of a thin phytoplankton layer in strong turbulence. Continental Shelf Research, 30(1):104-118, https://doi.org/10.1016/j.csr.2009.08.006.
Williams C, Sharples J, Green M, Mahaffey C, Rippeth T. 2013a. The maintenance of the subsurface chlorophyll maximum in the stratified western Irish Sea. Limnology and Oceanography:Fluids and Environments, 3(1):61-73, https://doi.org/10.1215/21573689-2285100.
Williams C, Sharples J, Mahaffey C, Rippeth T. 2013b. Winddriven nutrient pulses to the subsurface chlorophyll maximum in seasonally stratified shelf seas. Geophysical Research Letters, 40(20):5467-5472, https://doi.org/10.1002/2013GL058171.
Wolk F, Yamazaki H, Seuront L, Lueck R G. 2002. A new freefall profiler for measuring biophysical microstructure. Journal of Atmospheric and Oceanic Technology, 19(5):780-793, https://doi.org/10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.
Wu C R, Hsin Y C. 2012. The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. Journal of Geophysical Research:Oceans, 117(C7):C07015, https://doi.org/10.1029/2012JC007968.
Xie X H, Liu Q, Zhao Z X, Shang X D, Cai S Q, Wang D X, Chen D K. 2018. Deep Sea currents driven by breaking internal tides on the continental slope. Geophysical Research Letters, 45(12):6160-6166, https://doi.org/10.1029/2018GL078372.
Yang Q X, Tian J W, Zhao W, Liang X F, Zhou L. 2014. Observations of turbulence on the shelf and slope of northern South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 87:43-52, https://doi.org/10.1016/j.dsr.2014.02.006.
Zhao Z X, Alford M H. 2006. Source and propagation of internal solitary waves in the northeastern South China Sea. Journal of Geophysical Research:Oceans, 111(C11):C11012, https://doi.org/10.1029/2006JC003644.
Zhao Z X, Klemas V, Zheng Q N, Yan X H. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letters, 31(6):L06302, https://doi.org/10.1029/2003GL019077.
Zhao Z X. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research:Oceans, 119(8):5434-5448, https://doi.org/10.1002/2014JC010014.
Copyright © Haiyang Xuebao