Cite this paper:
Lei ZHOU, Yaoquan HAN, Dapeng WANG, Yusen LI, Xiande HUANG, Anyou HE. Comparison of fungal community composition within different intestinal segments of tilapia and bighead carp[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1961-1971

Comparison of fungal community composition within different intestinal segments of tilapia and bighead carp

Lei ZHOU1,2, Yaoquan HAN1, Dapeng WANG1, Yusen LI1,2, Xiande HUANG2, Anyou HE1
1 Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
2 Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
Abstract:
Although intestinal fungi play important roles in host health and disease, the composition and diversity of fungal communities remain poorly reported in fish. In this study, fungi in the fore-, mid-, and hindintestine of tilapia (Oreochromis mossambicus) and bighead carp (Aristichthys nobilis) from Hongchaojiang Reservoir in Guangxi, China were investigated by ITS sequencing. Based on this, we obtained 1 763 478 high-quality tags, which clustered into 1 089 operational taxonomic units (OTUs). In total, 404 OTUs were annotated, of which 310, 68, and 26 belonged to Ascomycota, Basidiomycota, and other, respectively. Results show significant differences in the community composition of intestinal fungi between tilapia and bighead carp but not within their different intestinal segments. Furthermore, 154 of the 404 annotated OTUs were considered reliable and were classified into three trophic modes and nine guilds. The three trophic modes consisted of 108 OTUs of saprotrophic fungi, 41 OTUs of pathotrophic fungi, and five OTUs of symbiotrophic fungi. The top three most abundant OTUs overall (i.e., Otu000002, Scopulariopsis acremonium; Otu000018, Alternaria palandui; Otu000034, Aureobasidium pullulans) showed lower abundance in the hind-intestinal segments of bighead carp, suggesting uneven distribution of these fungi in this species. In addition, saprotrophic and pathotrophic fungi were markedly decreased in the hindintestine. It is indicated that the fungal community was not only related to host species specificity but also to the respective physiological functions of different intestinal segments. These findings provide valuable information on the composition, structure, and potential function of the intestinal fungi community associated with different intestinal segments in tilapia and bighead carp under natural conditions, thus highlighting the importance of fungi as an integral part of the intestinal microbiota in maintaining host health.
Key words:    fungi|intestinal microbiome|tilapia|bighead carp|Internal Transcribed Spacer (ITS) sequencing   
Received: 2020-05-30   Revised: 2020-10-12
Tools
PDF (1262 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Lei ZHOU
Articles by Yaoquan HAN
Articles by Dapeng WANG
Articles by Yusen LI
Articles by Xiande HUANG
Articles by Anyou HE
References:
Aranda E. 2016. Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Current Opinion in Biotechnology, 38:1-8, https://doi.org/10.1016/j.copbio.2015.12.002.
Blander J M, Longman R S, Iliev I D, Sonnenberg G F, Artis D. 2017. Regulation of inflammation by microbiota interactions with the host. Nature Immunology, 18:851-860, https://doi.org/10.1038/ni.3780.
Bokulich N A, Subramanian S, Faith J J, Gevers D, Gordon J I, Knight R, Mills D A, Caporaso J G. 2013. Qualityfiltering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10:57-59, https://doi.org/10.1038/nmeth.2276.
Borsodi A K, Szabó A, Krett G, Felföldi T, Specziár A, Boros G. 2017. Gut content microbiota of introduced bigheaded carps (Hypophthalmichthys spp.) inhabiting the largest shallow lake in Central Europe. Microbiological Research, 195:40-50, https://doi.org/10.1016/j.micres.2016.11.001.
Buttigieg P L, Ramette A. 2014. A guide to statistical analysis in microbial ecology:a community-focused, living review of multivariate data analyses. FEMS Microbiology Ecology, 90(3):543-550, https://doi.org/10.1111/1574-6941.12437.
Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7:335-336, https://doi.org/10.1038/nmeth.f.303.
Caruffo M, Navarrete N, Salgado O, Díaz A, López P, García K, Feijóo C G, Navarrete P. 2015. Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio) from a Vibrio anguillarum challenge. Frontiers in Microbiology, 6:1 093, https://doi.org/10.3389/fmicb.2015.01093.
Crowther T W, Boddy L, Hefin Jones T. 2012. Functional and ecological consequences of saprotrophic fungus-grazer interactions. The ISME Journal, 6:1 992-2 001, https://doi.org/10.1038/ismej.2012.53.
Cui L J, Morris A, Ghedin E. 2013. The human mycobiome in health and disease. Genome Medicine, 5:63, https://doi.org/10.1186/gm467.
Denstadli V, Vegusdal A, Krogdahl Å, Bakke-McKellep A M, Berge G M, Holm H, Hillestad M, Ruyter B. 2004. Lipid absorption in different segments of the gastrointestinal tract of Atlantic salmon (Salmo salar L.). Aquaculture, 240(1-4):385-398, https://doi.org/10.1016/j.aquaculture.2004.06.030.
Edgar R C. 2013. UPARSE:highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10:996-998, https://doi.org/10.1038/nmeth.2604.
Eichmiller J J, Hamilton M J, Staley C, Sadowsky M J, Sorensen P W. 2016. Environment shapes the fecal microbiome of invasive carp species. Microbiome, 4(1):44, https://doi.org/10.1186/s40168-016-0190-1.
Ellison M D, Hung R T, Harris K, Campbell B H. 1998. Report of the first case of invasive fungal sinusitis caused by Scopulariopsis acremonium:review of scopulariopsis infections. Archives of Otolaryngology-Head & Neck Surgery, 124(9):1 014-1 016, https://doi.org/10.1001/archotol.124.9.1014.
Gadd G M. 2007. Geomycology:biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1):3-49, https://doi.org/10.1016/j.mycres.2006.12.001.
Gatesoupe F J. 2007. Live yeasts in the gut:natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture, 267(1-4):20-30, https://doi.org/10.1016/j.aquaculture.2007.01.005.
Hassaan M S, Soltan M A, Jarmolowicz S, Abdo H S. 2018. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 24(1):83-93, https://doi.org/10.1111/anu.12536.
Kashinskaya E N, Simonov E P, Kabilov M R, Izvekova G I, Andree K B, Solovyev M M. 2018. Diet and other environmental factors shape the bacterial communities of fish gut in an eutrophic lake. Journal of Applied Microbiology, 125(6):1 626-1 641, https://doi.org/10.1111/jam.14064.
Le H T M D, Shao X T, Krogdahl Å, Kortner T M, Lein I, Kousoulaki K, Lie K K, Sæle Ø. 2019. Intestinal function of the stomachless fish, Ballan wrasse (Labrus bergylta). Frontiers in Marine Science, 6:140, https://doi.org/10.3389/fmars.2019.00140.
Li J W, Liu G, Li C W, Deng Y L, Tadda M A, Lan L H, Zhu S M, Liu D Z. 2018a. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture, 495:919-931, https://doi.org/10.1016/j.aquaculture.2018.06.078.
Li X H, Yu Y H, Li C, Yan Q Y. 2018b. Comparative study on the gut microbiotas of four economically important Asian carp species. Science China Life Sciences, 61:696-705, https://doi.org/10.1007/s11427-016-9296-5.
Li X M, Zhu Y J, Ringø E, Wang X G, Gong J L, Yang D G. 2018c. Intestinal microbiome and its potential functions in bighead carp (Aristichthys nobilis) under different feeding strategies. PeerJ, 6:e6000, https://doi.org/10.7717/peerj.6000.
Lin K T, Wang W X, Ruan H T, Dai J G, Sun J J, Liu L, Huang X D. 2019. Transcriptome analysis of differentially expressed genes in the fore- and hind-intestine of ovate pompano Trachinotus ovatus. Aquaculture, 508:76-82, https://doi.org/10.1016/j.aquaculture.2019.04.078.
Lynch S V, Pedersen O. 2016. The human intestinal microbiome in health and disease. The New England Journal of Medicine, 375:2 369-2 379, https://doi.org/10.1056/NEJMra1600266.
Magoč T, Salzberg S L. 2011. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21):2 957-2 963, https://doi.org/10.1093/bioinformatics/btr507.
Marden C L, McDonald R, Schreier H J, Watts J E M. 2017. Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiology, 3(4):749-761, https://doi.org/10.3934/microbiol.2017.4.749.
Nash A K, Auchtung T A, Wong M C, Smith D P, Gesell J R, Ross M C, Stewart C J, Metcalf G A, Muzny D M, Gibbs R A, Ajami N J, Petrosino J F. 2017. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome, 5:153, https://doi.org/10.1186/s40168-017-0373-4.
Nayak S K. 2010. Role of gastrointestinal microbiota in fish. Aquaculture Research, 41(11):1 553-1 573, https://doi.org/10.1111/j.1365-2109.2010.02546.x.
Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas J D. 2017. The ecological role of type three secretion systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-dependent.FrontiersinMicrobiology, 8:38, https://doi.org/10.3389/fmicb.2017.00038.
Nguyen N H, Song Z W, Bates S T, Branco S, Tedersoo L, Menke J, Schilling J S, Kennedy P G. 2016. FUNGuild:An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20:241-248, https://doi.org/10.1016/j.funeco.2015.06.006.
Nguyen T A, Cissé O H, Wong J Y, Zheng P, Hewitt D, Nowrousian M, Stajich J E, Jedd G. 2017. Innovation and constraint leading to complex multicellularity in the Ascomycota. Nature Communications, 8:14 444, https://doi.org/10.1038/ncomms14444.
Øverland M, Karlsson A, Mydland L T, Romarheim O H, Skrede A. 2013. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon(Salmo salar). Aquaculture, 402-403:1-7, https://doi.org/10.1016/j.aquaculture.2013.03.016.
Peay K G, Kennedy P G, Talbot J M. 2016. Dimensions of biodiversity in the Earth mycobiome. Nature Reviews Microbiology, 14:434-447, https://doi.org/10.1038/nrmicro.2016.59.
Qin J J, Li R Q, Raes J, Arumugam M, Burgdorf K S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J H, Xu J M, Li S C, Li D F, Cao J J, Wang B, Liang H Q, Zheng H S, Xie Y L, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H M, Yu C, Li S T, Jian M, Zhou Y, Li Y R, Zhang X Q, Li S G, Qin N, Yang H M, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich S D, Wang J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285):59-65, https://doi.org/10.1038/nature08821.
Rooks M G, Garrett W S. 2016. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16:341-352, https://doi.org/10.1038/nri.2016.42.
Sarlin P J, Philip R. 2011. Efficacy of marine yeasts and baker's yeast as immunostimulants in Fenneropenaeus indicus:a comparative study. Aquaculture, 321(3-4):173-178, https://doi.org/10.1016/j.aquaculture.2011.08.039.
Schoch C L, Sung G H, López-Giráldez F, Townsend J P, Miadlikowska J, Hofstetter V, Robbertse B, Matheny P B, Kauff F, Wang Z, Gueidan C, Andrie R M, Trippe K, Ciufetti L M, Wynns A, Fraker E, Hodkinson B P, Bonito G, Groenewald J Z, Arzanlou M, de Hoog G S, Crous P W, Hewitt D, Pfister D H, Peterson K, Gryzenhout M, Wingfield M J, Aptroot A, Suh S O, Blackwell M, Hillis D M, Griffith G W, Castlebury L A, Rossman A Y, Lumbsch H T, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser D M, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O'Donnell K, Sipman H, Rogers J D, Shoemaker R A, Sugiyama J, Summerbell R C, Untereiner W, Johnston P R, Stenroos S, Zuccaro A, Dyer P S, Crittenden P D, Cole M S, Hansen K, Trappe J M, Yahr R, Lutzoni F, Spatafora J W. 2009. The Ascomycota tree of life:a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology, 58(2):224-239, https://doi.org/10.1093/sysbio/syp020.
Seed P C. 2014. The human mycobiome. Cold Spring Harbor Perspectives in Medicine, 5:a019810, https://doi.org/10.1101/cshperspect.a019810.
Talbot J M, Bruns T D, Smith D P, Branco S, Glassman S I, Erlandson S, Vilgalys R, Peay K G. 2013. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biology and Biochemistry, 57:282-291, https://doi.org/10.1016/j.soilbio.2012.10.004.
Talwar C, Nagar S, Lal R, Negi R K. 2018. Fish gut microbiome:current approaches and future perspectives. Indian Journal of Microbiology, 58:397-414, https://doi.org/10.1007/s12088-018-0760-y.
Teixeira M M, Moreno L F, Stielow B J, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, Patané J S L, Priest M, Souza R, Young S, Ferreira K S, Zeng Q, da Cunha M M L, Gladki A, Barker B, Vicente V A, de Souza E M, Almeida S, Henrissat B, Vasconcelos A T R, Deng S, Voglmayr H, Moussa T A A, Gorbushina A, Felipe M S S, Cuomo C A, de Hoog G S. 2017. Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Studies in Mycology, 86:1-28, https://doi.org/10.1016/j.simyco.2017.01.001.
Wang A R, Ran C, Ringø E, Zhou Z G. 2018. Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10(3):626-640, https://doi.org/10.1111/raq.12191.
Wang M, Liu G B, Lu M X, Ke X L, Liu Z G, Gao F Y, Cao J M, Zhu H P, Yi M M, Yu D G. 2017. Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquaculture Research, 48(6):3 163-3 173, https://doi.org/10.1111/are.13146.
Wijayawardene N N, Hyde K D, McKenzie E H C, Wang Y. 2018. Notes for genera update-Ascomycota:6822-6917. Mycosphere, 9(6):1 222-1 234, https://doi.org/10.5943/mycosphere/9/6/11.
Yang E C, Xu L L, Yang Y, Zhang X Y, Xiang M C, Wang C S, An Z Q, Liu X Z. 2012. Origin and evolution of carnivorism in the Ascomycota (fungi). Proceedings of the National Academy of Sciences of the United States of America, 109(27):10 960-10 965, https://doi.org/10.1073/pnas.1120915109.
Yu L L, Qiao N Z, Li T Q, Yu R P, Zhai Q X, Tian F W, Zhao J X, Zhang H, Chen W. 2019. Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ, 7:e6963, https://doi.org/10.7717/peerj.6963.
Zheng Y, Wu W, Hu G D, Qiu L P, Meng S L, Song C, Fan L M, Zhao Z X, Bing X W, Chen J Z. 2018. Gut microbiota analysis of juvenile genetically improved farmed tilapia(Oreochromis niloticus) by dietary supplementation of different resveratrol concentrations. Fish and Shellfish Immunology, 77:200-207, https://doi.org/10.1016/j.fsi.2018.03.040.
Zhou L, Lin K T, Gan L, Sun J J, Guo C J, Liu L, Huang X D. 2019. Intestinal microbiota of grass carp fed faba beans:a comparative study. Microorganisms, 7(10):465, https://doi.org/10.3390/microorganisms7100465.
Copyright © Haiyang Xuebao