Cite this paper:
Wei GAO, Zhenyan WANG, Xuegang LI, Haijun HUANG. The increased storage of suspended particulate matter in the upper water of the tropical Western Pacific during the 2015/2016 super El Niño event[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1675-1689

The increased storage of suspended particulate matter in the upper water of the tropical Western Pacific during the 2015/2016 super El Niño event

Wei GAO1, Zhenyan WANG1,2,3,4, Xuegang LI3,4,5, Haijun HUANG1,3,4
1 CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
5 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
The climate variability induced by the El Niño-Southern Oscillation (ENSO) cycle drives significant changes in the physical state of the tropical Western Pacific, which has important impacts on the upper ocean carbon cycle. During 2015-2016, a super El Niño event occurred in the equatorial Pacific. Suspended particulate matter (SPM) data and related environmental observations in the tropical Western Pacific were obtained during two cruises in Dec. 2014 and 2015, which coincided with the early and peak stages of this super El Niño event. Compared with the marine environments in the tropical Western Pacific in Dec. 2014, an obviously enhanced upwelling occurred in the Mindanao Dome region; the nitrate concentration in the euphotic zone almost tripled; and the size, mass concentration, and volume concentration of SPM obviously increased in Dec. 2015. The enhanced upwelling in the Mindanao Dome region carried cold but eutrophic water upward from the deep ocean to shallow depths, even into the euphotic zone, which disrupted the previously N-limited conditions and induced a remarkable increase in phytoplankton blooms in the euphotic zone. These results reveal the mechanism of how nutrient-limited ecosystems in the tropical Western Pacific respond to super El Niño events. In the context of the ENSO cycle, if predicted changes in biogenic particles occur, the proportion of carbon storage in the tropical Western Pacific is estimated to be increased by more than 52%, ultimately affecting the regional and possibly even global carbon cycle. This paper highlights the prospect for long-term prediction of the impact of a super El Niño event on the global carbon cycle and has profound implications for understanding El Niño events.
Key words:    suspended particulate matter|field observations|tropical Western Pacific|2015/2016 super El Niñ    o event|ocean carbon cycle   
Received: 2020-09-26   Revised: 2020-11-17
Tools
PDF (10052 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Wei GAO
Articles by Zhenyan WANG
Articles by Xuegang LI
Articles by Haijun HUANG
References:
Alonso-González I J, Arístegui J, Lee C, Sanchez-Vidal A, Calafat A, FabrFa J, Sangra P, Masqua P, HernuFabrez SynchrotBen Her-Barrios V. 2010. Role of slowly settling particles in the ocean carbon cycle. Geophysical Research Letters, 37(13):L13608, https://doi.org/10.1029/2010GL043827.
Buesseler K O, Lamborg C H, Boyd P W, Lam P J, Trull T W, Bidigare R R, Bishop J K P, Casciotti K L, Dehairs F, Elskens M, Honda M, Karl D M, Siegel D A, Silver M W, Steinberg D K, Valdes J, Van Mooy B, Wilson S. 2007. Revisiting carbon flux through the ocean's twilight zone. Science, 316(5824):567-570, https://doi.org/10.1126/SCIENCE.1137959.
Chen L, Li T, Wang B, Wang L. 2017. Formation mechanism for 2015/16 Super El Niño. Scientific Reports, 7:2 975, https://doi.org/10.1038/s41598-017-02926-3.
Codispoti L A, Flagg C N, Swift J H. 2009. Hydrographic conditions during the 2004 SBI process experiments. Deep Sea Research Part II:Topical Studies in Oceanography, 56(17):1 144-1 163, https://doi.org/10.1016/J.DSR2.2008.10.013.
Dunne J P, Murray J W, Rodier M, Hansell D A. 2000. Export flux in the western and central equatorial Pacific:zonal and temporal variability. Deep Sea Research Part I:Oceanographic Research Papers, 47(5):901-936, https://doi.org/10.1016/S0967-0637(99)00089-8.
Fender C K, Kelly T B, Guidi L, Ohman M D, Smith M C, Stukel M R. 2019. Investigating particle size-flux relationships and the biological pump across a range of plankton ecosystem states from coastal to oligotrophic. Frontiers in Marine Science, 6:603, https://doi.org/10.3389/FMARS.2019.00603.
Gao W, Wang Z Y, Zhang K N. 2017. Controlling effects of mesoscale eddies on thermohaline structure and in situ chlorophyll distribution in the western North Pacific. Journal of Marine Systems, 175:24-35, https://doi.org/10.1016/J.JMARSYS.2017.07.002.
Gould R W. 1987. The deep chlorophyll maximum in the world ocean:a review. Biologist, 66(1-4):4-13.
Gupta L P, Kawahata H. 2002. Impact of ENSO variability on the flux and composition of sinking POM in the western equatorial Pacific Ocean:amino acids and hexosamines. Deep Sea Research Part II:Topical Studies in Oceanography, 49(13-14):2 769-2 782, https://doi.org/10.1016/S0967-0645(02)00057-7.
Harding L W Jr, Gallegos C L, Perry E S, Miller W D, Adolf J E, Mallonee M E, Paerl H W. 2016. Long-term trends of nutrients and phytoplankton in Chesapeake Bay. Estuaries and Coasts, 39(3):664-681, https://doi.org/10.1007/S12237-015-0023-7.
Hashihama F, Kanda J, Maeda Y, Ogawa H, Furuya K. 2014. Selective depressions of surface silicic acid within cyclonic mesoscale eddies in the oligotrophic western North Pacific. Deep Sea Research Part I:Oceanographic Research Papers, 90:115-124, https://doi.org/10.1016/J.DSR.2014.05.004.
Hopkinson B M, Barbeau K A. 2008. Interactive influences of iron and light limitation on phytoplankton at subsurface chlorophyll maxima in the eastern North Pacific. Limnology and Oceanography, 53(4):1 303-1 318, https://doi.org/10.4319/LO.2008.53.4.1303.
Hu D X, Wu L X, Cai W J, Gupta A S, Ganachaud A, Qiu B, Gordon A L, Lin X P, Chen Z H, Hu S J, Wang G J, Wang Q Y, Sprintall J, Qu T D, Kashino J, Wang F, Kessler W S. 2015. Pacific western boundary currents and their roles in climate. Nature, 522(7556):299-308, https://doi.org/10.1038/NATURE14504.
Iskandar I, Utari P A, Lestari D O, Sari Q W, Setiabudidaya D, Khakim M Y N, Yustian I, Dahlan Z. 2017. Evolution of 2015/2016 El Niño and its impact on Indonesia. AIP Conference Proceedings, 1857:080001, https://doi.org/10.1063/1.4987095.
Jouon A, Ouillon S, Douillet P, Lefebvre J P, Fernandez J M, Mari X, Froidefond J M. 2008. Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon. Marine Geology, 256(1-4):36-48, https://doi.org/10.1016/J.MARGEO.2008.09.008.
Kashino Y, España N, Syamsudin F, Richards K J, Jensen T, Dutrieux P, Ishida A. 2009. Observations of the North Equatorial Current, Mindanao Current, and Kuroshio current system during the 2006/07 El Niño and 2007/08 La Niña. Journal of Oceanography, 65(3):325-333, https://doi.org/10.1007/S10872-009-0030-Z.
Kawahata H, Gupta L P. 2003. El Niño/Southern Oscillation(ENSO) related variations in particulate export fluxes in the Western and Central Equatorial Pacific. Journal of Oceanography, 59(5):663-670, https://doi.org/10.1023/B:JOCE.0000009595.79408.13.
Kawahata H. 1999. Fluctuations in the ocean environment within the Western Pacific Warm Pool during Late Pleistocene. Paleoceanography, 14(5):639-652, https://doi.org/10.1029/1999PA900023.
Laufkötter C, Vogt M, Gruber N, Aumont O, Bopp L, Doney S C, Dunne J P, Hauck J, John J G, Lima I D, Seferian R, Völker C. 2016. Projected decreases in future marine export production:the role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 13:4 023-4 047, https://doi.org/10.5194/BG-13-4023-2016.
Li W J, Wang Z Y, Huang H J. 2020. Indication of size distribution of suspended particulate matter for sediment transport in the South Yellow Sea. Estuarine, Coastal and Shelf Science, 235:106619, https://doi.org/10.1016/J.ECSS.2020.106619.
Lim Y K, Kovach R M, Pawson S, Vernieres G. 2017. The 2015/2016 El Niño event in context of the MERRA-2 reanalysis:a comparison of the tropical pacific with 1982/1983 and 1997/1998. Journal of Climate, 30(13):4 819-4 842, https://doi.org/10.1175/JCLI-D-16-0800.1.
Lukas R, Firing E, Hacker P, Richardson P L, Collins C A, Fine R, Gammon R. 1991. Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study. Journal of Geophysical Research:Oceans, 96(C4):7 089-7 104, https://doi.org/10.1029/91JC00062.
Masumoto Y, Yamagata T. 1991. Response of the western tropical Pacific to the Asian winter monsoon:the generation of the Mindanao Dome. Journal of Physical Oceanography, 21(9):1 386-1 398, https://doi.org/10.1175/1520-0485(1991)021<1386:ROTWTP>2.0.CO;2.
Matsumoto K, Honda M C, Sasaoka K, Wakita M, Kawakami H, Watanabe S. 2014. Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre:control by light availability within the mixed layer. Journal of Geophysical Research:Oceans, 119(9):6 523-6 534, https://doi.org/10.1002/2014JC009982.
Morel A, Claustre H, Gentili B. 2010. The most oligotrophic subtropical zones of the global ocean:similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences, 7:3 139-3 151, https://doi.org/10.5194/BG-7-3139-2010.
Pingree R D, Pugh P R, Holligan P M, Forster G R. 1975. Summer phytoplankton blooms and red tides along tidal fronts in the approaches to the English Channel. Nature, 258(5537):672-677, https://doi.org/10.1038/258672A0.
Qiu B, Chen S M, Rudnick D L, Kashino Y. 2015. A new paradigm for the north Pacific subthermocline lowlatitude western boundary current system. Journal of Physical Oceanography, 45(9):2 407-2 423, https://doi.org/10.1175/JPO-D-15-0035.1.
Qiu Z F, Xiao C, Perrie W, Sun D Y, Wang S Q, Shen H, Yang D Z, He Y J. 2017. Using Landsat 8 data to estimate suspended particulate matter in the Yellow River Estuary. Journal of Geophysical Research:Oceans, 122(1):276-290. https://doi.org/10.1002/2016JC012412.
Santoso A, Mcphaden M J, Cai W J. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Reviews of Geophysics, 55(4):1 079-1 129, https://doi.org/10.1002/2017RG000560.
Spannl S, Volland F, Pucha D, Peters T, Cueva E, Bräuning A. 2016. Climate variability, tree increment patterns and ENSO-related carbon sequestration reduction of the tropical dry forest species Loxopterygium huasango of Southern Ecuador. Trees, 30(4):1 245-1 258, https://doi.org/10.1007/S00468-016-1362-0.
Suga T, Kato A, Hanawa K. 2000. North Pacific Tropical Water:its climatology and temporal changes associated with the climate regime shift in the 1970s. Progress in Oceanography, 47(2-4):223-256, https://doi.org/10.1016/S0079-6611(00)00037-9.
Talley L D. 1993. Distribution and formation of North Pacific intermediate water. Journal of Physical Oceanography, 23(3):517-537, https://doi.org/10.1175/1520-0485(1993) 023<0517:DAFONP>2.0.CO;2.
Tan S C, Li J W, Che H Z, Chen B, Wang H. 2017. Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010. Atmospheric Environment, 148:316-328, https://doi.org/10.1016/J.ATMOSENV.2016.10.054.
Távora J, Fernandes E H, Bitencourt L P, Orozco P M S. 2020. El-Niño Southern Oscillation (ENSO) effects on the variability of Patos Lagoon suspended particulate matter. Regional Studies in Marine Science, 40:101495, https://doi.org/10.1016/j.rsma.2020.101495.
Timmermann A, An S I, Kug J S, Jin F F, Cai W J, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D, Kim S, Kim W, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G M, Wang G J, Xie R H, Yang W H, Yeh S W, Yoon J, Zeller E, Zhang X B. 2018. El Niño-Southern Oscillation complexity. Nature, 559(7715):535-545, https://doi.org/10.1038/S41586-018-0252-6.
Tozuka T, Kagimoto T, Masumoto Y, Yamagata T. 2002. Simulated multiscale variations in the western tropical Pacific:the Mindanao dome revisited. Journal of Physical Oceanography, 32(5):1 338-1 359, https://doi.org/10.1175/1520-0485(2002)032<1338:SMVI TW>2.0.CO;2.
Udarbe-Walker M J B, Villanoy C L. 2001. Structure of potential upwelling areas in the Philippines. Deep Sea Research Part I:Oceanographic Research Papers, 48(6):1 499-1 518, https://doi.org/10.1016/S0967-0637(00) 00100-X.
Wan S M, Yu Z J, Clift P D, Sun H J, Li A C, Li T G. 2012. History of Asian eolian input to the West Philippine Sea over the last one million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328:152-159, https://doi.org/10.1016/J.PALAEO.2012.02.015.
Wang Z Y, Li W J, Zhang K N, Agrawal Y C, Huang H J. 2020. Observations of the distribution and flocculation of suspended particulate matter in the North Yellow Sea cold water mass. Continental Shelf Research, 204:104187, https://doi.org/10.1016/J.CSR.2020.104187.
Williams N D, Walling D E, Leeks G J L. 2007. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment. Water Research, 41(5):1 081-1 093, https://doi.org/10.1016/j.watres.2006.11.010.
Woźniak S B, Meler J, Lednicka B, Zdun A, Stoń-Egiert J. 2011. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia, 53(3):691-729, https://doi.org/10.5697/OC.53-3.691.
Yamaguchi Y, Kondo M, Kobori T. 2012. Safety inspections and seismic behavior of embankment dams during the 2011 off the Pacific Coast of Tohoku earthquake. Soils and Foundations, 52(5):945-955, https://doi.org/10.1016/J.SANDF.2012.11.013.
Yeh S W, Kug J S, Dewitte B, Kwon M H, Kirtman B P, Jin F F. 2009. El Niño in a changing climate. Nature, 461(7263):511-514, https://doi.org/10.1038/NATURE08316.
Yiǧiterhan O, Murray J W, Tuǧrul S. 2011. Trace metal composition of suspended particulate matter in the water column of the Black Sea. Marine Chemistry, 126(1-4):207-228, https://doi.org/10.1016/J.MARCHEM.2011.05. 006.
Zhang K N, Wang Z Y, Li W J, Yan J. 2019. Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer. Journal of Oceanology and Limnology, 37(1):79-92, https://doi.org/10.1007/S00343-019-7153-X.
Zhao W C, Sun Y B, Balsam W, Lu H Y, Liu L W, Chen J, Ji J F. 2014. Hf-Nd isotopic variability in mineral dust from Chinese and Mongolian deserts:implications for sources and dispersal. Scientific Reports, 4(1):5 837, https://doi.org/10.1038/SREP05837.
Copyright © Haiyang Xuebao