Cite this paper:
Chaoran CUI, Rong-Hua ZHANG, Yanzhou WEI, Hongna WANG. Mesoscale wind stress-SST coupling induced feedback to the ocean in the western coast of South America[J]. Journal of Oceanology and Limnology, 2021, 39(3): 785-799

Mesoscale wind stress-SST coupling induced feedback to the ocean in the western coast of South America

Chaoran CUI1,2, Rong-Hua ZHANG1,2,3,4, Yanzhou WEI5, Hongna WANG1,3
1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China;
4 Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China;
5 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Abstract:
The feedback induced by mesoscale wind stress-SST coupling to the ocean in the western coast of South America was studied using the Regional Ocean Modeling System (ROMS). To represent the feedback, an empirical mesoscale wind stress perturbation model was constructed from satellite observations, and was incorporated into the ocean model. Comparing two experiments with and without the mesoscale wind stress-SST coupling, it was found that SST in the mesoscale coupling experiment was reduced in the western coast of South America, with the maximum values of 0.5 ℃ in the Peru Sea and 0.7 ℃ in the Chile Sea. A mixed layer heat budget analysis indicates that horizontal advection is the main term that explains the reduction in SST. Specifically, the feedback induced by mesoscale wind stress-SST coupling to the ocean can enhance vertical velocity in the nearshore area through the Ekman pumping, which brings subsurface cold water to the sea surface. These results indicate that the feedback due to the mesoscale wind stress-SST coupling to the ocean has the potential for reducing the warm SST bias often seen in the large-scale climate model simulations in this region.
Key words:    mesoscale air-sea coupling|western coast of South America|ocean model simulations|cooling effect|warm bias   
Received: 2020-05-02   Revised: 2020-06-05
Tools
PDF (11238 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Chaoran CUI
Articles by Rong-Hua ZHANG
Articles by Yanzhou WEI
Articles by Hongna WANG
References:
Albert A, Echevin V, Lévy M, Aumont O. 2010. Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system.J. Geophys. Res.:Oceans, 115(C12):C12033, https://doi.org/10.1029/2010JC006569.
Bakun A. 1990. Global climate change and intensification of coastal ocean upwelling. Science, 247(4939):198-201, https://doi.org/10.1126/science.247.4939.198.
Bourras D, Reverdin G, Giordani H, Caniaux G. 2004. Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J. Geophys. Res.:Atmos., 109(D18):D18114, https://doi.org/10.1029/2004JD004799.
Bryan F O, Tomas R, Dennis J M, Chelton D B, Loeb N G, McClean J L. 2010. frontal scale air-sea interaction in highresolution coupled climate models. J. Climate, 23(23):6 277-6 291, https://doi.org/10.1175/2010JCLI3665.1.
Castelao R M. 2012. Sea surface temperature and wind stress curl variability near a cape. J. Phys. Oceanogr., 42(11):2 073-2 087, https://doi.org/10.1175/JPO-D-11-0224.1.
Chavez F P, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J. 2008. The northern Humboldt Current system:brief history, present status and a view towards the future. Prog.Oceanogr., 79(2-4):95-105, https://doi.org/10.1016/j.pocean.2008.10.012.
Chelton D B, Esbensen S K, Schlax M G, Thum N, Freilich M H, Wentz F J, Gentemann C L, McPhaden M J, Schopf P S. 2001. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14(7):1 479-1 498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.
Chelton D B, Schlax M G, Freilich M H, Milliff R F. 2004.Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303(5660):978-983, https://doi.org/10.1126/science.1091901.
Chelton D B, Schlax M G, Samelson R M. 2007. Summertime coupling between sea surface temperature and wind stress in the California current system. J. Phys. Oceanogr., 37(3):495-517, https://doi.org/10.1175/JPO3025.1.
Chelton D B, Xie S P. 2010. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23(4):52-69, https://doi.org/10.5670/oceanog.2010.05.
Cleveland W S, Devlin S J. 1988. Locally weighted regression:an approach to regression analysis by local fitting. J. Am. Stat.Assoc., 83(403):596-610, https://doi.org/10.2307/2289282.
Cui C R, Zhang R H, Wang H N, Wei Y Z. 2020. Representing surface wind stress response to mesoscale SST perturbations in western coast of South America using Tikhonov regularization method. J. Oceanol. Limnol., 38(3):679-694, https://doi.org/10.1007/s00343-019-9042-8.
Davey M, Huddleston M, Sperber K, Braconnot P, Bryan F, Chen D, Colman R, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Latif M, Le Treut H, Li T, Manabe S, Mechoso C, Meehl G, Power S, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Yukimoto S, Zebiak S. 2002. STOIC:a study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18(5):403-420, https://doi.org/10.1007/s00382-001-0188-6.
Desbiolles F, Blamey R, Illig S, James R, Barimalala R, Renault L, Reason C. 2018. Upscaling impact of wind/sea surface temperature mesoscale interactions on southern Africa austral summer climate. Int. J. Climatol., 38(12):4 651-4 660, https://doi.org/10.1002/joc.5726.
Frenger I, Gruber N, Knutti R, Münnich M. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat.Geosci., 6(8):608-612, https://doi.org/10.1038/ngeo1863.
Gao J X, Zhang R H, Wang H N. 2019. Mesoscale SST perturbation-induced impacts on climatological precipitation in the Kuroshio-Oyashio extension region, as revealed by the WRF simulations. J. Oceanol. Limnol., 37(2):385-397, https://doi.org/10.1007/s00343-019-8065-5.
Gaube P, Chelton D B, Samelson R M, Schlax M G, O'Neill L W. 2015. Satellite observations of mesoscale eddyinduced Ekman pumping. J. Phys. Oceanogr., 45(1):104-132, https://doi.org/10.1175/JPO-D-14-0032.1.
Haidvogel D B, Arango H, Budgell W P, Cornuelle B D, Curchitser E, Di Lorenzo E, Fennel K, Geyer W R, Hermann A J, Lanerolle L, Levin J, McWilliams J C, Miller A J, Moore A M, Powell T M, Shchepetkin A F, Sherwood C R, Signell R P, Warner J C, Wilkin J. 2008. Ocean forecasting in terrain-following coordinates:formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 227(7):3 595-3 624, https://doi.org/10.1016/j.jcp.2007.06.016.
Hogg A M C, Dewar W K, Berloff P, Kravtsov S, Hutchinson D K. 2009. The effects of mesoscale ocean-atmosphere coupling on the large-scale ocean circulation. J. Climate, 22(15):4 066-4 082, https://doi.org/10.1175/2009JCLI2629.1.
Hu Z Z, Huang B H, Hou Y T, Wang W Q, Yang F L, Stan C, Schneider E K. 2011. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system.Climate Dyn., 36(9-10):1 795-1 811, https://doi.org/10.1007/s00382-010-0797-z.
Huang B H, Hu Z Z, Jha B. 2007. Evolution of model systematic errors in the tropical Atlantic basin from coupled climate hindcasts. Climate Dyn., 28(7-8):661-682, https://doi.org/10.1007/s00382-006-0223-8.
Huang B Y, Xue Y, Zhang D X, Kumar A, McPhaden M J. 2010. The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23(18):4 901-4 925, https://doi.org/10.1175/2010JCLI3373.1.
Jin X, Dong C M, Kurian J, McWilliams J C, Chelton D B, Li Z J. 2009. SST-wind interaction in coastal upwelling:oceanic simulation with empirical coupling. J. Phys.Oceanogr., 39(11):2 957-2 970, https://doi.org/10.1175/2009JPO4205.1.
Ma C C, Mechoso C R, Robertson A W, Arakawa A. 1996.Peruvian stratus clouds and the tropical Pacific circulation:a coupled ocean-atmosphere GCM study. J.Climate, 9(7):1 635-1 645, https://doi.org/10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.
Ma X H, Jing Z, Chang P, Liu X, Montuoro R, Small R J, Bryan F O, Greatbatch R J, Brandt P, Wu D X, Lin X P, Wu L X. 2016. Western boundary currents regulated by interaction between ocean eddies and the atmosphere.Nature, 535(7613):533-537, https://doi.org/10.1038/nature18640.
Meehl G A, Covey C, McAvaney B, Latif M, Stouffer R J. 2005. Overview of the coupled model intercomparison project. Bull. Am. Meteor. Soc., 86(1):89-93, https://doi.org/10.1175/BAMS-86-1-89.
Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani A. 2015. Peru-Chile upwelling dynamics under climate change. J. Geophys. Res.:Oceans, 120(2):1 152-1 172, https://doi.org/10.1002/2014JC010299.
Oerder V, Colas F, Echevin V, Masson S, Hourdin C, Jullien S, Madec G, Lemarié F. 2016. Mesoscale SST-wind stress coupling in the Peru-Chile current system:which mechanisms drive its seasonal variability? Climate Dyn., 47(7-8):2 309-2 330, https://doi.org/10.1007/s00382-015-2965-7.
Oerder V, Colas F, Echevin V, Masson S, Lemarié F. 2018.Impacts of the mesoscale ocean-atmosphere coupling on the Peru-Chile ocean dynamics:the current-induced wind stress modulation. J. Geophys. Res.:Oceans, 123(2):812-833, https://doi.org/10.1002/2017JC013294.
O'Neill L W, Chelton D B, Esbensen S K, Wentz F J. 2005.High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18(14):2 706-2 723, https://doi.org/10.1175/JCLI3415.1.
O'Neill L W. 2012. Wind Speed and Stability Effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25(5):1 544-1 569, https://doi.org/10.1175/JCLI-D-11-00121.1.
Penven P, Echevin V. Pasapera J, Colas F, Tam J. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System:a modeling approach. J.Geophys. Res.:Ocean, 110(C10):C10021, https://doi.org/10.1029/2005JC002945.
Piazza M, Terray L, Boé J, Maisonnave E, Sanchez-Gomez E. 2016. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere:a study using the atmospheric ARPEGE model. Climate Dyn., 46(5-6):1 699-1 717, https://doi.org/10.1007/s00382-015-2669-z.
Seo H, Miller A J, Norris J R. 2016. Eddy-wind interaction in the California Current System:dynamics and impacts. J.Phys. Oceanogr., 46(2):439-459, https://doi.org/10.1175/JPO-D-15-0086.1.
Seo H. 2017. Distinct influence of air-sea interactions mediated by mesoscale sea surface temperature and surface current in the Arabian Sea. J. Climate, 30(20):8 061-8 080, https://doi.org/10.1175/JCLI-D-16-0834.1.
Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanol.Acta, 22(1):1-17, https://doi.org/10.1016/S0399-1784(99)80028-0.
Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model., 9(4):347-404, https://doi.org/10.1016/j.ocemod. 2004.08.002.
Small R J, DeSzoeke S P, Xie S P, O'Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S. 2008. Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45(3-4):274-319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.
Song Y H, Haidvogel D. 1994. A semi-implicit ocean circulation model using a generalized topographyfollowing coordinate system. J. Comput. Phys., 115(1):228-244, https://doi.org/10.1006/jcph.1994.1189.
Sweet W, Fett R, Kerling J, La Violette P. 1981. Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon. Wea. Rev., 109(5):1 042-1 052, https://doi.org/10.1175/1520-0493(1981)109<1042:ASIEIT>2.0.CO;2.
Wajsowicz R C. 1993. A consistent formulation of the anisotropic stress tensor for use in models of the largescale ocean circulation. J. Comput. Phys., 105(2):333-338, https://doi.org/10.1006/jcph.1993.1079.
Wei Y Z, Kang X B, Pei Y H. 2018. An empirical tropical instability wave-induced wind stress model in the equatorial Pacific and its incorporation into the ocean model. Atmos. Ocean, 56(5):350-361, https://doi.org/10.1080/07055900.2018.1549016.
Wei Y Z, Zhang R H, Wang H N. 2017. Mesoscale wind stressSST coupling in the Kuroshio extension and its effect on the ocean. J. Oceanogr., 73(6):785-798, https://doi.org/10.1007/s10872-017-0432-2.
Zhang R H. 2014. Effects of tropical instability wave (TIW)-induced surface wind feedback in the tropical Pacific Ocean. Climate Dyn., 42(1-2):467-485, https://doi.org/10.1007/s00382-013-1878-6.
Zhang R H, Busalacchi A J. 2008. Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific. Geophys. Res. Lett., 35:L05608, https://doi.org/10.1029/2007GL033028.
Zhang R H, Li Z X, Zhu J S, Kang X B, Min J Z. 2014. Impact of tropical instability waves-induced SST forcing on the atmosphere in the tropical Pacific, evaluated using CAM5.1. Atmos. Sci. Lett., 15(3):186-194, https://doi.org/10.1002/asl2.488.
Zhang R H, Yu Y Q, Song Z Y, Ren H L, Tang Y M, Qiao F L, Wu T W, Gao C, Hu J Y, Tian F, Zu Y C, Chen L, Liu H L, Lin P F, Wu F H, Wang L. 2020. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. J. Oceanol. Limnol., 38(4):930-961, https://doi.org/10.1007/s00343-020-0157-8.
Zhu Y C, Zhang R H. 2018. An Argo-derived background diffusivity parameterization for improved ocean simulations in the tropical Pacific. Geophys. Res. Lett., 45(3):1 509-1 517, https://doi.org/10.1002/2017GL076269.
Zhu Y C, Zhang R H. 2019. A modified vertical mixing parameterization for its improved ocean and coupled simulations in the tropical Pacific. J. Phys. Oceanogr., 49(1):21-37, https://doi.org/10.1175/JPO-D-18-0100.1.
Zuidema P, Chang P, Medeiros B, Kirtman B P, Mechoso R, Schneider E K, Toniazzo T, Richter I, Small R J, Bellomo K, Brandt P, de Szoeke S, Farrar J T, Jung E, Kato S, Li M K, Patricola C, Wang ZY, Wood R, Xu Z. 2016. Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans:the U.S. CLIVAR eastern tropical oceans synthesis working group. Bull. Am. Meteor. Soc., 97(12):2 305-2 328, https://doi.org/10.1175/BAMS-D-15-00274.1.
Copyright © Haiyang Xuebao